Development of myocardial perfusion imaging from coronary angiography for clinical application

Ahn JM, Park DW, Shin ES, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective IRIS-FFR registry. Circulation. 2017;135:2241–51. https://doi.org/10.1161/CIRCULATIONAHA.116.024433.

Article  PubMed  Google Scholar 

Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol. 1974;33:87–94. https://doi.org/10.1016/0002-9149(74)90743-7.

Article  CAS  PubMed  Google Scholar 

Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–32. https://doi.org/10.1161/01.CIR.0000080700.98607.D1.

Article  PubMed  Google Scholar 

Faria D, Hennessey B, Mejía-Rentería H, et al. Functional coronary angiography for the assessment of the epicardial vessels and the microcirculation. EuroIntervention. 2023;19:3. https://doi.org/10.4244/EIJ-D-22-00969.

Article  Google Scholar 

Mejía-Rentería H, Nombela-Franco L, Paradis JM, et al. Angiography-based quantitative flow ratio versus fractional flow reserve in patients with coronary artery disease and severe aortic stenosis. EuroIntervention. 2020;16:285–92. https://doi.org/10.4244/EIJ-D-19-01001.

Article  Google Scholar 

Iskandrian AS, Chae SC, Heo J, et al. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol. 1993;22:665–70. https://doi.org/10.1016/0735-1097(93)90174-Y.

Article  CAS  PubMed  Google Scholar 

Hachamovitch R, Hayes SW, Friedman JD, et al. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single-photon emission computed tomography. Circulation. 2003;107:2900–7. https://doi.org/10.1161/01.CIR.0000072790.23090.41.

Article  PubMed  Google Scholar 

Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single-photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43. https://doi.org/10.1161/01.CIR.97.6.535.

Article  CAS  PubMed  Google Scholar 

Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43. https://doi.org/10.1053/j.semnuclmed.2014.06.011.

Article  PubMed  PubMed Central  Google Scholar 

Danad I, Raijmakers PG, Driessen RS, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100. https://doi.org/10.1001/jamacardio.2017.2471.

Article  PubMed  PubMed Central  Google Scholar 

Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. https://doi.org/10.1016/S0140-6736(11)61335-4.

Article  PubMed  PubMed Central  Google Scholar 

Vant Hof AWJ, Liem A, Suryapranata H, et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction. Circulation. 1998;97:2302–6. https://doi.org/10.1161/01.CIR.97.23.2302.

Article  Google Scholar 

Hofmann NP, Dickhaus H, Katus HA, et al. Quantitative assessment of myocardial blush grade in patients with coronary artery disease and in cardiac transplant recipients. World J Cardiol. 2014;6:1108–12. https://doi.org/10.4330/wjc.v6.i10.1108.

Article  PubMed  PubMed Central  Google Scholar 

Sakaguchi T, Ichihara T, Trost JC, et al. Development of a theory for generating regional cardiac perfusion images during coronary angiography in the coronary angiography lab. Int J Cardiovasc Imaging. 2014;30:9–19. https://doi.org/10.1007/s10554-013-0354-3.

Article  PubMed  Google Scholar 

Sakaguchi T, Ichihara T, Natsume T, et al. Development of a method for automated and stable myocardial perfusion measurement using coronary X-ray angiography images. Int J Cardiovasc Imaging. 2015;31:905–14. https://doi.org/10.1007/s10554-015-0658-2.

Article  PubMed  Google Scholar 

Otton JM, Phan J, Feneley M, et al. Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography. BMC Med Imaging. 2013;13:5. https://doi.org/10.1186/1471-2342-13-5.

Article  PubMed  PubMed Central  Google Scholar 

Chareonthaitawee P, Kaufmann PA, Rimoldi O, et al. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50:151–61. https://doi.org/10.1016/S0008-6363(01)00202-4.

Article  CAS  PubMed  Google Scholar 

Shechter G, Shechter B, Resar JR, et al. Prospective motion correction of X-ray images for coronary interventions. IEEE Trans Med Imaging. 2005;24:441–50. https://doi.org/10.1109/TMI.2004.839679.

Article  PubMed  Google Scholar 

Yamaguchi S, Ichikawa Y, Takafuji M, et al. Usefulness of second-generation motion correction algorithm in improving delineation and reducing motion artifact of coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2024;18:281–90. https://doi.org/10.1101/j.jcct.2024.02.008.

Article  PubMed  Google Scholar 

Çimen S, Gooya A, Grass M, et al. Reconstruction of coronary arteries from X-ray angiography: a review. Med Image Anal. 2016;32:46–68. https://doi.org/10.1016/j.media.2016.02.007.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif