Tzeng WS, Kuo KM, Liu CF, Yao HC, Chen CY, Lin HW. Managing repeat digital radiography images—a systematic approach and improvement. J Med Syst. 2012;36:2697–704. https://doi.org/10.1007/s10916-011-9744-8.
Yokooka Y, Okuda Y, Sakamoto H, Ihara K, Kawamata M, Yamada E. Survey of the requested function for quality assurance system for images (Kenzo system). Jpn J Radiol Technol. 2018;74:580–90.
Yamada E, Kishimoto K, Kusumi K, Kimura T, Sawai A. The construction of a quality assurance system for images in general radiography in a filmless environment: construction of an accurate and swift workflow. Jpn J Radiol Technol. 2011;67:1209–15.
Oura D, Sato S, Honma Y, Kuwajima S, Sugimori H. Quality assurance of chest X-ray images with a combination of deep learning methods. Appl Sci. 2023;13:2067. https://doi.org/10.3390/app13042067.
Pescarini L, Inches I. Systematic approach to human error in radiology. Radiol Med. 2006;111:252–67. https://doi.org/10.1007/s11547-006-0026-3.
Article CAS PubMed Google Scholar
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLOS Med. 2018;15: e1002683. https://doi.org/10.1371/journal.pmed.1002683.
Article PubMed PubMed Central Google Scholar
Albalawi E, Mahesh TR, Thakur A, Kumar VV, Gupta M, Khan SB, et al. Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor. BMC Med Imaging. 2024;24:110. https://doi.org/10.1186/s12880-024-01261-0.
Article PubMed PubMed Central Google Scholar
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9. https://doi.org/10.1038/s41591-018-0316-z.
Article CAS PubMed Google Scholar
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. https://doi.org/10.1136/svn-2017-000101.
Article PubMed PubMed Central Google Scholar
ImageNet: Stanford Vision Lab, Stanford University, Princeton University; 2016 [cited 2024 October 1]. Available from: http://www.image-net.org. Accessed 1 Oct 2024.
Karaddi SH, Lakhan DS. Classification of lung disorders in chest multi-modal images using hyper-Parameter tuning and modified ResNet50. Multimed Tools Appl. 2024. https://doi.org/10.1007/s11042-024-20097-y.
Showkat S, Shaima Q. Efficacy of Transfer learning-based ResNet models in chest X-ray image classification for detecting COVID-19 pneumonia. Chemom Intell Lab Syst. 2022;224: 104534. https://doi.org/10.1016/j.chemolab.2022.104534.
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017, pp. 3462–71. https://doi.org/10.1109/CVPR.2017.369
Bustos A, Pertusa A, Salinas JM, de la Iglesia-Vayá M. Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med Image Anal. 2020;66: 101797. https://doi.org/10.1016/j.media.2020.101797.
Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S. Covid-cxnet: detecting Covid-19 in frontal chest x-ray images using deep learning. Multimed Tool Appl. 2022;81:30615–45. https://doi.org/10.1007/s11042-022-12156-z.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016, pp. 2921–9. https://doi.org/10.1109/CVPR.2016.319
Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn. 2001;45:171–86. https://doi.org/10.1023/A:1010920819831.
Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644–7. https://doi.org/10.1111/j.1651-2227.2006.00178.x.
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11): e1002683. https://doi.org/10.1371/journal.pmed.1002683.
Article PubMed PubMed Central Google Scholar
Nunnari F, Kadir MDA, Sonntag D. On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images. In: International cross-domain conference for machine learning and knowledge extraction. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-84060-0_16.
Comments (0)