Decision support using machine learning for predicting adequate bladder filling in prostate radiotherapy: a feasibility study

Mohler J, Antonarakis E, Armstrong A, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2019;17(5):479–505.

Article  CAS  PubMed  Google Scholar 

Wong W, Vora S, Schild S, et al. Radiation dose escalation for localized prostate cancer. Cancer. 2009;115(23):5596–606.

Article  CAS  PubMed  Google Scholar 

Zelefsky M, Fuks Z, Happersett L, et al. Clinical experience with intensity modulated therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55(3):241–9.

Article  CAS  PubMed  Google Scholar 

Inokuchi H, Mizowaki T, Norihisa Y, et al. Correlation between urinary dose and delayed radiation cystitis after 78 Gy intensity-modulated radiotherapy for high-risk prostate cancer: a 10-year follow-up study of genitourinary toxicity in clinical practice. Clin Transl Radiat Oncol. 2017;6:31–6.

PubMed  PubMed Central  Google Scholar 

Pederson A, Fricano J, Correa D, et al. Late toxicity after intensity-modulated radiation therapy for localized prostate cancer: an exploration of dose-volume histogram parameters to limit genitourinary and gastrointestinal toxicity. Int J Radiat Oncol Biol Phys. 2012;2(1):235–41.

Article  Google Scholar 

Wan L, Jiang Y, Zhu X, et al. Quantitative assessment of adaptive radiotherapy for prostate cancer using deep learning: bladder dose as a decision criterion. Med Phys. 2023;50:6479–89.

Article  CAS  PubMed  Google Scholar 

Nasser N, Fenig E, Klein J, et al. Maintaining consistent bladder filling during external beam radiotherapy for prostate cancer. Tech Innov Patient Support Radiat Oncol. 2021;17:1–4.

Article  PubMed  PubMed Central  Google Scholar 

Zhang F, Zhou M, Wang G, et al. Evaluation of bladder filling effects on the dose distribution during radiotherapy for cervical cancer based on daily CT images. J Appl Clin Med Phys. 2023;24: e14097.

Article  PubMed  PubMed Central  Google Scholar 

Cramp L, Connors V, Wood M, et al. Use of a prospective cohort study in the development of a bladder scanning protocol to assist in bladder filling consistency for prostate cancer patients receiving radiation therapy. J Med Radiat Sci. 2016;63(3):179–85.

Article  PubMed  PubMed Central  Google Scholar 

Gawthrop J, Oates R. Measured bladder volume for radiotherapy of the prostate using the hand-held BladderScan® BVI 3000. Radiographer. 2012;59(1):8–12.

Article  Google Scholar 

Mullaney L, O’Shea E, Dunne M, et al. A comparison of bladder volumes based on treatment planning CT and BladderScan® BVI 6100 ultrasound device in a prostate radiation therapy population. Br J Radiol. 2018;91(1091):20180160.

Article  PubMed  PubMed Central  Google Scholar 

Meeson S, Killingback AL, Blott BH. The dependence of EIT images on the assumed initial conductivity distribution: a study of pelvic imaging. Phys Med Biol. 1995;40(4):643–57.

Article  CAS  PubMed  Google Scholar 

Olmi R, Bini M, Priori S. A genetic algorithm approach to image reconstruction in electrical impedance tomography. IEEE Trans Evol Comput. 2000;4(1):83–8.

Article  Google Scholar 

Varanasi S, Manchikatla C, Polisetty V, et al. Sparse optimization for image reconstruction in electrical impedance tomography. IFAC-PapersOnLine. 2019;52(1):34–9.

Article  Google Scholar 

Braide K, Kindblom J, Lindencrona U, et al. The value of a bladder-filling protocol for patients with prostate cancer who receive post-operative radiation: results from a prospective clinical trial. Acta Oncol. 2019;58(4):463–8.

Article  PubMed  Google Scholar 

Mullaney L, O’Shea E, Dunne M, et al. A randomized trial comparing bladder volume consistency during fractionated prostate radiation therapy. Pract Radiat Oncol. 2014;4(5):e203–12.

Article  PubMed  Google Scholar 

O’Doherty M, McNair H, Norman A, et al. Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol. 2006;79(3):335–40.

Article  PubMed  Google Scholar 

Fiorino C, Muzio N, Broggi S, et al. Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys. 2008;71(2):611–7.

Article  PubMed  Google Scholar 

Kalz J, Sterzing F, Schubert K, et al. Dosimetric comparison of image guidance by megavoltage computed tomography versus bone alignment for prostate cancer radiotherapy. Strahlenther Onkol. 2009;185(4):241–7.

Article  PubMed  Google Scholar 

Nakamura N, Shikama N, Takahashi O, et al. Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol. 2010;186(11):637–42.

Article  PubMed  Google Scholar 

Kuo D, Hsu C, Wang W, et al. BladderScan feedback method in predicting bladder filling for prostate radiotherapy: a prospective Study. Technol Cancer Res Treat. 2021;20:1533033821995277.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishioka K, Gotoh K, Hashimoto T, et al. Are simple verbal instructions sufficient to ensure that bladder volume does not deteriorate prostate position reproducibility during spot scanning proton therapy? BJR Open. 2021;3(1):20210064.

PubMed  PubMed Central  Google Scholar 

Ebert M, Gulliford S, Acosta O, et al. Spatial descriptions of radiotherapy dose: normal tissue complication models and statistical associations. Phys Med Biol. 2021;66(12):12TR01.

Article  Google Scholar 

Field M, Hardcastle N, Jameson M, et al. Machine learning applications in radiation oncology. Phys Imaging Radiat Oncol. 2021;19:13–24.

Article  PubMed  PubMed Central  Google Scholar 

Luo Y, Chen S, Valdes G. Machine learning for radiation outcome modeling and prediction. Med Phys. 2020;47(5):e178–84.

Article  PubMed  Google Scholar 

Ahn SH, Kim E, Kim C, et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer. Radiat Oncol. 2021;16(1):154.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen D, Jia X, Sher D, et al. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019;64(6): 065020.

Article  PubMed  Google Scholar 

Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep. 2019;9(1):1076.

Article  PubMed  PubMed Central  Google Scholar 

Shiraishi S, Moore KL. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy. Med Phys. 2016;43(1):378–87.

Article  PubMed  Google Scholar 

Yuan Z, Wang Y, Hu P, et al. Accelerate treatment planning process using deep learning generated fluence maps for cervical cancer radiation therapy. Med Phys. 2022;49(4):2631–41.

Article  PubMed  Google Scholar 

Huang Y, Pi Y, Ma K, et al. Deep learning for patient-specific quality assurance: predicting gamma passing rates for IMRT based on delivery fluence informed by log files. Technol Cancer Res Treat. 2022;21:15330338221104880.

Article  PubMed  PubMed Central  Google Scholar 

Lam D, Zhang X, Li H, et al. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning. Med Phys. 2019;46(10):4666–75.

Article  PubMed  Google Scholar 

Thongsawad S, Srisatit S, Fuangrod T. Predicting gamma evaluation results of patient-specific head and neck volumetric-modulated arc therapy quality assurance based on multileaf collimator patterns and fluence map features: a feasibility study. J Appl Clin Med Phys. 2022;23(7): e13622.

Article  PubMed  PubMed Central  Google Scholar 

Tomori S, Kadoya N, Kajikawa T, et al. Systematic method for a deep learning-based prediction model for gamma evaluation in patient-specific quality assurance of volumetric modulated arc therapy. Med Phys. 2021;48(3):1003–18.

Article  PubMed 

Comments (0)

No login
gif