Development and description of a porcine model of combat casualty care for traumatic-hemorrhagic shock research and medical training

Champion HR, Bellamy RF, Roberts CP, Leppaniemi A. A profile of combat injury. J Trauma: Injury, Infection & Critical Care. 2003;54:S13-9. https://doi.org/10.1097/01.TA.0000057151.02906.27.

Article  Google Scholar 

Travers S, Carfantan C, Luft A, Aigle L, Pasquier P, Martinaud C, et al. Five years of prolonged field care: prehospital challenges during recent French military operations. Transfusion. 2019;59:1459–66. https://doi.org/10.1111/trf.15262.

Article  PubMed  Google Scholar 

McManus JG, Eastridge BJ, DeWitte M, Greydanus DJ, Rice J, Holcomb JB. Combat trauma training for current casualty care. J Trauma: Injury, Infection & Critical Care. 2007;62:S13. https://doi.org/10.1097/TA.0b013e3180653b7e.

Article  Google Scholar 

Majde JA. Animal models for hemorrhage and resuscitation research. J Trauma: Injury, Infection & Critical Care. 2003;54:S100-5. https://doi.org/10.1097/01.TA.0000064503.24416.F4.

Article  Google Scholar 

Vatner SF. Effects of anesthesia on cardiovascular control mechanisms. Environ Health Perspect. 1978;26:193–206. https://doi.org/10.1289/ehp.7826193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Law NL, Ng KFJ, Irwin MG, Man JSF. Comparison of coagulation and blood loss during anaesthesia with inhaled isoflurane or intravenous propofol. Br J Anaesthesia. 2001;86:94–8. https://doi.org/10.1093/bja/86.1.94.

Article  CAS  Google Scholar 

Kessler U, Grau T, Gronchi F, Berger S, Brandt S, Bracht H, et al. Comparison of porcine and human coagulation by thrombelastometry. Thrombosis Res. 2011;128:477–82. https://doi.org/10.1016/j.thromres.2011.03.013.

Article  CAS  Google Scholar 

Braun P, Wenzel V, Paal P. Anesthesia in prehospital emergencies and in the emergency department. Curr Opinion Anaesthesiol. 2010;23:500–6. https://doi.org/10.1097/ACO.0b013e32833bc135.

Article  Google Scholar 

Boschert K, Flecknell PA, Fosse RT, Framstad T, Ganter M, Sjøstrand U, et al. Ketamine and its use in the pig: Recommendations of the Consensus Meeting on Ketamine Anaesthesia in Pigs, Bergen 1994. Lab Anim. 1996;30:209–19. https://doi.org/10.1258/002367796780684863.

Article  CAS  PubMed  Google Scholar 

Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49:344–56. https://doi.org/10.1177/0300985811402846.

Article  CAS  PubMed  Google Scholar 

Ljubkovic M, Mio Y, Marinovic J, Stadnicka A, Warltier DC, Bosnjak ZJ, et al. Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. Am J Physiol-Cell Physiol. 2007;292:C1583-90. https://doi.org/10.1152/ajpcell.00221.2006.

Article  CAS  PubMed  Google Scholar 

Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AKS. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837:354–65. https://doi.org/10.1016/j.bbabio.2013.11.006.

Article  CAS  PubMed  Google Scholar 

Dai W, Shi J, Carreno J, Kloner RA. Different effects of volatile and nonvolatile anesthetic agents on long-term survival in an experimental model of hemorrhagic shock. J Cardiovasc Pharmacol Ther. 2020;25:346–53. https://doi.org/10.1177/1074248420919221.

Article  CAS  PubMed  Google Scholar 

Flecknell PA. Laboratory animal anaesthesia. 4th ed. Amsterdam: Academic Press; 2016.

Google Scholar 

Bigby SE, Carter JE, Bauquier S, Beths T. The use of alfaxalone for premedication, induction and maintenance of anaesthesia in pigs: a pilot study. Vet Anaesthesia Analgesia. 2017;44:905–9. https://doi.org/10.1016/j.vaa.2016.06.008.

Article  CAS  Google Scholar 

Watts S, Nordmann G, Brohi K, Midwinter M, Woolley T, Gwyther R, et al. Evaluation of prehospital blood products to attenuate acute coagulopathy of trauma in a model of severe injury and shock in anesthetized pigs. Shock. 2015;44:138–48. https://doi.org/10.1097/SHK.0000000000000409.

Article  PubMed  PubMed Central  Google Scholar 

Watts SA, Smith JE, Woolley T, Rickard RF, Gwyther R, Kirkman E. Resuscitation with whole blood or blood components improves survival and lessens the pathophysiological burden of trauma and haemorrhagic shock in a pre-clinical porcine model. Eur J Trauma Emerg Surg. 2023;49:227–39. https://doi.org/10.1007/s00068-022-02050-6.

Article  PubMed  Google Scholar 

Cain SM, Chapler CK. Circulatory adjustments to anemic hypoxia. In: Gonzalez NC, Fedde MR, editors. Oxygen transfer from atmosphere to tissues. Boston, MA: Springer US; 1988. p. 103–15. https://doi.org/10.1007/978-1-4684-5481-9_9.

Räsänen J. Supply-dependent oxygen consumption and mixed venous oxyhemoglobin saturation during isovolemic hemodilution in pigs. Chest. 1992;101:1121–4. https://doi.org/10.1378/chest.101.4.1121.

Article  PubMed  Google Scholar 

Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Critical Care. 2015;19. https://doi.org/10.1186/s13054-015-0896-7.

Bahrami S, Benisch C, Zifko C, Jafarmadar M, Schöchl H, Redl H. Xylazine-/Diazepam-Ketamine and isoflurane differentially affect hemodynamics and organ injury under hemorrhagic/traumatic shock and resuscitation in rats. Shock. 2011;35:573–8. https://doi.org/10.1097/SHK.0b013e318212266b.

Article  CAS  PubMed  Google Scholar 

Hildebrand F, Radermacher P, Ruchholtz S, Huber-Lang M, Seekamp A, Flohé S, et al. Relevance of induced and accidental hypothermia after trauma-haemorrhage–what do we know from experimental models in pigs? ICMx. 2014;2:16. https://doi.org/10.1186/2197-425X-2-16.

Alam HB, Chen Z, Honma K, Koustova E, Ireneo LC, Querol R, Jaskille A, et al. The rate of induction of hypothermic arrest determines the outcome in a swine model of lethal hemorrhage. J Trauma: Injury Infection, and Critical Care. 2004;57:961–9. https://doi.org/10.1097/01.TA.0000149549.72389.3F.

Article  Google Scholar 

Sailhamer EA, Chen Z, Ahuja N, Velmahos GC, De Moya M, Rhee P, et al. Profound hypothermic cardiopulmonary bypass facilitates survival without a high complication rate in a swine model of complex vascular, splenic, and colon injuries. J Am College Surg. 2007;204:642–53. https://doi.org/10.1016/j.jamcollsurg.2007.01.017.

Article  Google Scholar 

Tisherman SA, Schmicker RH, Brasel KJ, Bulger EM, Kerby JD, Minei JP, et al. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the resuscitation outcomes consortium. Annal Surg. 2015;261:586–90. https://doi.org/10.1097/SLA.0000000000000837.

Article  Google Scholar 

Cho SD, Holcomb JB, Tieu BH, Englehart MS, Morris MS, Karahan ZA, et al. Reproducibility of an animal model simulating complex combat-related injury in a multiple-institution format. Shock. 2009;31:87–96. https://doi.org/10.1097/SHK.0b013e3181777ffb.

Article  PubMed  Google Scholar 

Xiang L, Calderon AS, Klemcke HG, Hinojosa-Laborde C, Becerra SC, Ryan KL. A novel animal model to study delayed resuscitation following traumatic hemorrhage. J Appl Physiol. 2022;133:814–21. https://doi.org/10.1152/japplphysiol.00335.2022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgetts TJ, Naumann D, Bowley D. Transferable military medical lessons from the Russo-Ukraine war. BMJ Mil Health. 2023;e002435. https://doi.org/10.1136/military-2023-002435.

Comments (0)

No login
gif