Sulforaphane regulates hepatic autophagy and apoptosis by modulating Kupffer cells’ polarization via Nrf2/HO-1 pathway in the murine hemorrhagic shock/resuscitation model

Cannon JW. Hemorrhagic shock. N Engl J Med. 2018;378:370–9. https://doi.org/10.1056/NEJMra1705649.

Article  PubMed  Google Scholar 

Vourc’h M, Roquilly A, Asehnoune K. Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely Ill patient. Front Immunol. 2018;9:1330. https://doi.org/10.3389/fimmu.2018.01330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmaniolou II, Theodoraki KA, Orfanos NF, Kostopanagiotou GG, Smyrniotis VE, Mylonas AI, et al. Resuscitation after hemorrhagic shock: the effect on the liver–a review of experimental data. J Anesth. 2013;27:447–60. https://doi.org/10.1007/s00540-012-1543-y.

Article  PubMed  Google Scholar 

Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation–from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10:79–89. https://doi.org/10.1038/nrgastro.2012.225.

Article  CAS  PubMed  Google Scholar 

Shi Y, Greven J, Guo W, Luo P, Xu D, Wang W, et al. Trauma-hemorrhage stimulates immune defense, mitochondrial dysfunction, autophagy, and apoptosis in pig liver at 72 h. Shock. 2021;55:630–9. https://doi.org/10.1097/shk.0000000000001556.

Article  CAS  PubMed  Google Scholar 

Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30. https://doi.org/10.1038/nrd3802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14:207–15. https://doi.org/10.1080/15548627.2017.1378838.

Article  CAS  PubMed  Google Scholar 

Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52. https://doi.org/10.1038/nrm2239.

Article  CAS  PubMed  Google Scholar 

Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. https://doi.org/10.1038/sj.cdd.4400476.

Article  CAS  PubMed  Google Scholar 

Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular imaging of apoptosis: the case of caspase-3 radiotracers. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22083948.

Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93. https://doi.org/10.1038/s41580-018-0089-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500:26–34. https://doi.org/10.1016/j.bbrc.2017.06.190.

Article  CAS  PubMed  Google Scholar 

Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–21. https://doi.org/10.1038/nri.2017.11.

Article  CAS  PubMed  Google Scholar 

Li PZ, Li JZ, Li M, Gong JP, He K. An efficient method to isolate and culture mouse Kupffer cells. Immunol Lett. 2014;158:52–6. https://doi.org/10.1016/j.imlet.2013.12.002.

Article  CAS  PubMed  Google Scholar 

Ikarashi M, Nakashima H, Kinoshita M, Sato A, Nakashima M, Miyazaki H, et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages. J Leukoc Biol. 2013;94:1325–36. https://doi.org/10.1189/jlb.0313144.

Article  CAS  PubMed  Google Scholar 

Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3:785–97. https://doi.org/10.1002/cphy.c120026.

Article  PubMed  PubMed Central  Google Scholar 

Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai L, Liu X, Zheng Q, Kong M, Zhang X, Hu R, et al. M2-like macrophages in the fibrotic liver protect mice against lethal insults through conferring apoptosis resistance to hepatocytes. Sci Rep. 2017;7:10518. https://doi.org/10.1038/s41598-017-11303-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271–84. https://doi.org/10.1080/15548627.2015.1009787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046.

Article  CAS  PubMed  Google Scholar 

Li H, Shang Z, Liu X, Qiao Y, Wang K, Qiao J. Clostridium butyricum alleviates enterotoxigenic escherichia coli K88-induced oxidative damage through regulating the p62-Keap1-Nrf2 signaling pathway and remodeling the cecal microbial community. Front Immunol. 2021;12:771826. https://doi.org/10.3389/fimmu.2021.771826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006;26:221–9. https://doi.org/10.1128/mcb.26.1.221-229.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sekhar KR, Yan XX, Freeman ML. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. Oncogene. 2002;21:6829–34. https://doi.org/10.1038/sj.onc.1205905.

Article  CAS  PubMed  Google Scholar 

Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16:123–40. https://doi.org/10.1111/j.1365-2443.2010.01473.x.

Article  CAS  PubMed  Google Scholar 

Petri S, Körner S, Kiaei M. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012;2012:878030. https://doi.org/10.1155/2012/878030.

Article  PubMed  PubMed Central  Google Scholar 

Eren E, Tufekci KU, Isci KB, Tastan B, Genc K, Genc S. Sulforaphane inhibits lipopolysaccharide-induced inflammation, cytotoxicity, oxidative stress, and miR-155 expression and switches to mox phenotype through activating extracellular signal-regulated kinase 1/2-nuclear factor erythroid 2-related factor 2/antioxidant response element pathway in murine microglial cells. Front Immunol. 2018;9:36. https://doi.org/10.3389/fimmu.2018.00036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu D, Chen L, Chen X, Wen Y, Yu C, Yao J, et al. The triterpenoid CDDO-imidazolide ameliorates mouse liver ischemia-reperfusion injury through activating the Nrf2/HO-1 pathway enhanced autophagy. Cell Death Dis. 2017;8:e2983. https://doi.org/10.1038/cddis.2017.386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang W, Greven J, Qin K, Fragoulis A, Horst K, Bläsius F, et al. Sulforaphane exerts beneficial immunomodulatory effects on liver tissue via a Nrf2 pathway-related mechanism in a murine model of hemorrhagic shock and resuscitation. Front Immunol. 2022;13:822895. https://doi.org

Comments (0)

No login
gif