Targeting lipid metabolism in acute myeloid leukemia: biological insights and therapeutic opportunities

Cucchi DGJ, Polak TB, Ossenkoppele GJ, Uyl–De Groot CA, Cloos J, Zweegman S, et al. Two decades of targeted therapies in acute myeloid leukemia. Leukemia. 2021;35:651–60.

Article  PubMed  Google Scholar 

Turkalj S, Radtke FA, Vyas P. An overview of targeted therapies in acute myeloid leukemia. HemaSphere. 2023;7:e914.

Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34:355–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–88.

Article  PubMed  PubMed Central  Google Scholar 

Lagadinou Eleni D, Sach A, Callahan K, Rossi Randall M, Neering Sarah J, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12:329–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phase 3 multicenter randomized trial to evaluate efficacy and safety of CPI-613 in combination with HD Cyt. and Mito. vs HD Cyt. and Mito. Therapy and control sub-groups in older patients With R/R AML. 2018. https://clinicaltrials.gov/study/NCT03504410.

Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med. 2023;29:115–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Brien C, Ling T, Berman JM, Culp-Hill R, Reisz JA, Rondeau V, et al. Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid β-oxidation and inducing lipotoxicity. Haematologica. 2023;108:2343–57.

PubMed  PubMed Central  Google Scholar 

Bruedigam C, Porter AH, Song A, Vroeg in de Wei G, Stoll T, Straube J, et al. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat Cancer. 2024;5:47–65.

Article  CAS  PubMed  Google Scholar 

Lewis AC, Pope VS, Tea MN, Li M, Nwosu GO, Nguyen TM, et al. Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood. 2022;139:3737–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kornblau SM, Banker DE, Stirewalt D, Shen D, Lemker E, Verstovsek S, et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood. 2006;109:2999–3006.

Article  Google Scholar 

Advani AS, Li H, Michaelis LC, Medeiros BC, Liedtke M, List AF, et al. Report of the relapsed/refractory cohort of SWOG S0919: A phase 2 study of idarubicin and cytarabine in combination with pravastatin for acute myelogenous leukemia (AML). Leuk Res. 2018;67:17–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JS, Roberts A, Juarez D, Vo T-TT, Bhatt S, Herzog L-o, et al. Statins enhance efficacy of venetoclax in blood cancers. Sci Transl Med. 2018;10:eaaq1240.

Article  PubMed  PubMed Central  Google Scholar 

Brem EA, Shieh K, Juarez D, Buono R, Jeyakumar D, O’Brien S, et al. A phase 1 study adding pitavastatin to venetoclax therapy in AML and CLL/SLL: a mechanism-based drug repurposing strategy. Blood Neoplasia. 2024;1:100036.

Article  Google Scholar 

Klock JC, Pieprzyk JK. Cholesterol, phospholipids, and fatty acids of normal immature neutrophils: comparison with acute myeloblastic leukemia cells and normal neutrophils. J Lipid Res. 1979;20:908–11.

Article  CAS  PubMed  Google Scholar 

Pabst T, Kortz L, Fiedler GM, Ceglarek U, Idle JR, Beyoğlu D. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin. 2017;7:105–14.

Article  PubMed  PubMed Central  Google Scholar 

Bolkun L, Pienkowski T, Sieminska J, Godzien J, Pietrowska K, Kłoczko J, et al. Metabolomic profile of acute myeloid leukaemia parallels of prognosis and response to therapy. Sci Rep. 2023;13:21809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stefanko A, Thiede C, Ehninger G, Simons K, Grzybek M. Lipidomic approach for stratification of acute myeloid leukemia patients. PLOS ONE. 2017;12:e0168781.

Article  PubMed  PubMed Central  Google Scholar 

Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D’Alessandro A, Winters A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat Cancer. 2020;1:1176–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricciardi MR, Mirabilii S, Allegretti M, Licchetta R, Calarco A, Torrisi MR, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood. 2015;126:1925–9.

Article  CAS  PubMed  Google Scholar 

Dembitz V, Lawson H, Burt R, Natani S, Philippe C, James SC, et al. Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation. Leukemia. 2024;38:2395–409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology. 2006;21:259–68.

Article  CAS  PubMed  Google Scholar 

Samovski D, Jacome-Sosa M, Abumrad NA. Fatty acid transport and signaling: mechanisms and physiological implications. Annu Rev Physiol. 2023;85:317–37.

Article  CAS  PubMed  Google Scholar 

Hao J-W, Wang J, Guo H, Zhao Y-Y, Sun H-H, Li Y-F, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020;11:4765.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Gao Z, Zhu J, Rodgers GP. Identification of CD13+CD36+ cells as a common progenitor for erythroid and myeloid lineages in human bone marrow. Exp Hematol. 2007;35:1047–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32:1746–58.

Article  CAS  PubMed  Google Scholar 

Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS-O, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–45.

Article  CAS  PubMed  Google Scholar 

Kuemmerle NB, Rysman E, Lombardo PS, Flanagan AJ, Lipe BC, Wells WA, et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Therapeutics. 2011;10:427–36.

Article  CAS  Google Scholar 

Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell. 2021;81:3708–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

Article  CAS  PubMed 

Comments (0)

No login
gif