Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet D, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.
Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis. 2019;69:S521–8.
Article CAS PubMed PubMed Central Google Scholar
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum beta-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR- P. aeruginosa). Clin Infect Dis. 2021;72:1109–16.
Madueño A, González Garcı́a J, Fernández-Romero S, Oteo J, Lecuona M. Dissemination and clinical implications of multidrug-resistant Klebsiella Pneumoniae isolates producing OXA-48 in a Spanish Hospital. J Hosp Infect. 2017;96:116–22.
Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The Global Ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33:e00102–19.
Article PubMed PubMed Central Google Scholar
Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16:661–73.
Article CAS PubMed Google Scholar
Bakthavatchalam YD, Anandan S, Veeraraghavan B. Laboratory detection and clinical implication of oxacillinase-48 like carbapenemase: the hidden threat. J Glob Infect Dis. 2016;8:41–50.
Article CAS PubMed PubMed Central Google Scholar
Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55:943–50.
Article CAS PubMed Google Scholar
Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17:1798–803.
Article CAS PubMed Google Scholar
Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multi drug-resistant infection. J Antimicrob Chemother. 2010;65:1119–25.
Article CAS PubMed Google Scholar
Mataraci Kara E, Yilmaz M, İstanbullu Tosun A, Özbek Çelik B. Evaluation of the synergy of ceftazidime/avibactam in combination with colistin, doripenem, levofloxacin, tigecycline, and tobramycin against OXA-48 producing Enterobacterales. Journal Chemother. 2020;32:171–8.
Rafailidis PI, Falagas ME. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2014;27:479–83.
Article CAS PubMed Google Scholar
Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013;57:5548–58.
Article CAS PubMed PubMed Central Google Scholar
Wu J, Zhang G, Zhao Q, Wang L, Yang J, Cui J. In vitro antimicrobial activity and dose optimization of eravacycline and other tetracycline derivatives against levofloxacin-non-susceptible and/or trimethoprim-sulfamethoxazole-resistant Stenotrophomonas maltophilia. Infect Drug Resist. 2023;16:6005–15.
Article CAS PubMed PubMed Central Google Scholar
Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Quale J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob Agents Chemother. 2015;59:1802–5. 79.
Article PubMed PubMed Central Google Scholar
Lee YR, Burton CE. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis. 2019;38:1787–94.
Article CAS PubMed Google Scholar
Guan X, He L, Hu B, Hu J, Huang X, Lai G, et al. Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative bacilli: a Chinese consensus statement. Clin Microbiol Infect. 2016;22:S15–25.
The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing. Sweden: EUCAST; 2023.
Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1.
Article CAS PubMed Google Scholar
Cai Y, Li R, Liang B, Bai N, Liu Y, Wang R. In vitro antimicrobial activity and mutant prevention concentration of colistin against Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54:3998–9.
Article CAS PubMed PubMed Central Google Scholar
Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.
Blondeau J, Zhao X, Hansen G, Drlica K. Mutant preventionconcentrations (MPC) of fluoroquinolones with clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:433–8.
Article CAS PubMed PubMed Central Google Scholar
Blondeau JM. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutantselection window approach. Vet Dermatol. 2009;20:383–96.
Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:3840–4.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Lin X, Bush K. In vitro susceptibility of β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline. Journal Antibiotics. 2016;69:600–4.
Zhang Y, Liu D, Liu Y, Li Q, Liu H, Zhou P, et al. Detection and characterization of eravacycline heteroresistance in clinical bacterial isolates. Front Microbiol. 2024;15:1332458.
Article PubMed PubMed Central Google Scholar
Diaz-Diaz S, Yerbes P, Recacha E, De Gregorio-Iaria B, Pulido MR, Romero-Muñoz M, et al. RecA inactivation as a strategy to reverse the heteroresistance phenomenon in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2023;61:106721.
Article CAS PubMed Google Scholar
Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L, Rolain JM. Heteroresistance to Colistin in clinical isolates of Klebsiella pneumoniae producing OXA-48. Antibiotics. 2023;12:1111.
Article PubMed PubMed Central Google Scholar
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin AS, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. 2018;115:E3463–70.
Article CAS PubMed PubMed Central Google Scholar
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016b;16:161–8.
Falagas ME, Kastoris AC, Kapaskelis AM. Karagoergopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10:43–50.
Comments (0)