Unlocking hidden bioactive compounds: from indolocarbazole and RiPP biosynthesis to the activation of cryptic secondary metabolism via microbial interactions

Omura S, Sasaki Y, Iwai Y, Takeshima H. Staurosporine, a potentially important gift from a microorganism. J Antibiot (Tokyo). 1995;48:535–48.

Article  PubMed  Google Scholar 

Kalitin N, Koroleva N, Lushnikova A, Babaeva M, Samoylenkova N, Savchenko E, et al. N-Glycoside of Indolo[2,3-a]pyrrolo[3,4-c]carbazole LCS1269 Exerts Anti-Glioblastoma Effects by G2 Cell Cycle Arrest and CDK1 activity modulation: molecular docking studies, biological investigations, and ADMET prediction. Pharmaceuticals (Basel). 2024;17:1642.

Nakano H, Omura S. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo). 2009;62:17–26.

Article  CAS  PubMed  Google Scholar 

Bush JA, Long BH, Catino JJ, Bradner WT, Tomita K. Production and biological activity of rebeccamycin, a novel antitumor agent. J Antibiot (Tokyo). 1987;40:668–78.

Article  CAS  PubMed  Google Scholar 

Ohuchi T, Ikeda-Araki A, Watanabe-Sakamoto A, Kojiri K, Nagashima M, Okanishi M, et al. Cloning and expression of a gene encoding N-glycosyltransferase (ngt) from Saccarothrix aerocolonigenes ATCC39243. J Antibiot (Tokyo). 2000;53:393–403.

Article  CAS  PubMed  Google Scholar 

Sanchez C, Butovich IA, Brana AF, Rohr J, Mendez C, Salas JA. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol. 2002;9:519–31.

Article  CAS  PubMed  Google Scholar 

Onaka H, Taniguchi S, Igarashi Y, Furumai T. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J Antibiot (Tokyo). 2002;55:1063–71.

Article  CAS  PubMed  Google Scholar 

Onaka H, Taniguchi S, Igarashi Y, Furumai T. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem. 2003;67:127–38.

Article  CAS  PubMed  Google Scholar 

Nishizawa T, Aldrich CC, Sherman DH. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J Bacteriol. 2005;187:2084–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howard-Jones AR, Walsh CT. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry. 2005;44:15652–63.

Article  CAS  PubMed  Google Scholar 

Asamizu S, Kato Y, Igarashi Y, Furumai T, Onaka H. Direct formation of chromopyrrolic acid from indole-3-pyruvic acid by StaD, a novel hemoprotein in indolocarbazole biosynthesis. Tetrahedron Lett. 2006;47:473–5.

Article  CAS  Google Scholar 

Asamizu S, Hirano S, Onaka H, Koshino H, Shiro Y, Nagano S. Coupling reaction of indolepyruvic acid by StaD and its product: implications for biosynthesis of indolocarbazole and violacein. Chembiochem. 2012;13:2495–500.

Article  CAS  PubMed  Google Scholar 

Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc Natl Acad Sci USA. 2007;104:11591–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Hirao H, Chen H, Onaka H, Nagano S, Shaik S. Electron transfer activation of chromopyrrolic acid by cytochrome p450 en route to the formation of an antitumor indolocarbazole derivative: theory supports experiment. J Am Chem Soc. 2008;130:7170–1.

Article  CAS  PubMed  Google Scholar 

Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, et al. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. J Am Chem Soc. 2009;131:6748–62.

Article  CAS  PubMed  Google Scholar 

Ryan KS, Howard-Jones AR, Hamill MJ, Elliott SJ, Walsh CT, Drennan CL. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC. Proc Natl Acad Sci USA. 2007;104:15311–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asamizu S, Shiro Y, Igarashi Y, Nagano S, Onaka H. Characterization and functional modification of StaC and RebC, which are involved in the pyrrole oxidation of indolocarbazole biosynthesis. Biosci Biotechnol Biochem. 2011;75:2184–93.

Article  CAS  PubMed  Google Scholar 

Xiao F, Zhou T-P, Dong S, Li T, Yun C-H, Feng Y, et al. Molecular Basis for the P450-Catalyzed sp3 C–N Glycosidic Bond Formation in Staurosporine Biosynthesis. ACS Catal. 2024;14:14274–84.

Article  CAS  Google Scholar 

Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Igarashi Y, Kan Y, Fujii K, Fujita T, Harada K, Naoki H, et al. Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II. Structure determination. J Antibiot (Tokyo). 2001;54:1045–53.

Article  CAS  PubMed  Google Scholar 

Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J Antibiot (Tokyo). 2001;54:1036–44.

Article  CAS  PubMed  Google Scholar 

Onaka H, Nakaho M, Hayashi K, Igarashi Y, Furumai T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiol (Read). 2005;151:3923–33.

Article  CAS  Google Scholar 

Ozaki T, Kurokawa Y, Hayashi S, Oku N, Asamizu S, Igarashi Y, et al. Insights into the biosynthesis of dehydroalanines in goadsporin. Chembiochem. 2016;17:218–23.

Article  CAS  PubMed  Google Scholar 

Onaka H, inventorA production method for heterocyclic peptide compounds and analogs of gordosporin. Japan Patent 5596271. 2014.

Hayashi S, Ozaki T, Asamizu S, Ikeda H, Omura S, Oku N, et al. Genome mining reveals a minimum gene set for the biosynthesis of 32-membered macrocyclic thiopeptides lactazoles. Chem Biol. 2014;21:679–88.

Article  CAS  PubMed  Google Scholar 

Schwalen CJ, Hudson GA, Kille B, Mitchell DA. Bioinformatic expansion and discovery of thiopeptide antibiotics. J Am Chem Soc. 2018;140:9494–501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozakai R, Ono T, Hoshino S, Takahashi H, Katsuyama Y, Sugai Y, et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat Chem. 2020;12:869–77.

Article  CAS  PubMed  Google Scholar 

Ozaki T, Yamashita K, Goto Y, Shimomura M, Hayashi S, Asamizu S, et al. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun. 2017;8:14207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinogradov AA, Shimomura M, Goto Y, Ozaki T, Asamizu S, Sugai Y, et al. Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun. 2020;11:2272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, et al. De novo discovery of thiopeptide pseudo-natural products acting as potent and selective TNIK kinase inhibitors. J Am Chem Soc. 2022;144:20332–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77:400–6.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif