Omura S, Sasaki Y, Iwai Y, Takeshima H. Staurosporine, a potentially important gift from a microorganism. J Antibiot (Tokyo). 1995;48:535–48.
Kalitin N, Koroleva N, Lushnikova A, Babaeva M, Samoylenkova N, Savchenko E, et al. N-Glycoside of Indolo[2,3-a]pyrrolo[3,4-c]carbazole LCS1269 Exerts Anti-Glioblastoma Effects by G2 Cell Cycle Arrest and CDK1 activity modulation: molecular docking studies, biological investigations, and ADMET prediction. Pharmaceuticals (Basel). 2024;17:1642.
Nakano H, Omura S. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo). 2009;62:17–26.
Article CAS PubMed Google Scholar
Bush JA, Long BH, Catino JJ, Bradner WT, Tomita K. Production and biological activity of rebeccamycin, a novel antitumor agent. J Antibiot (Tokyo). 1987;40:668–78.
Article CAS PubMed Google Scholar
Ohuchi T, Ikeda-Araki A, Watanabe-Sakamoto A, Kojiri K, Nagashima M, Okanishi M, et al. Cloning and expression of a gene encoding N-glycosyltransferase (ngt) from Saccarothrix aerocolonigenes ATCC39243. J Antibiot (Tokyo). 2000;53:393–403.
Article CAS PubMed Google Scholar
Sanchez C, Butovich IA, Brana AF, Rohr J, Mendez C, Salas JA. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol. 2002;9:519–31.
Article CAS PubMed Google Scholar
Onaka H, Taniguchi S, Igarashi Y, Furumai T. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J Antibiot (Tokyo). 2002;55:1063–71.
Article CAS PubMed Google Scholar
Onaka H, Taniguchi S, Igarashi Y, Furumai T. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem. 2003;67:127–38.
Article CAS PubMed Google Scholar
Nishizawa T, Aldrich CC, Sherman DH. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J Bacteriol. 2005;187:2084–92.
Article CAS PubMed PubMed Central Google Scholar
Howard-Jones AR, Walsh CT. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry. 2005;44:15652–63.
Article CAS PubMed Google Scholar
Asamizu S, Kato Y, Igarashi Y, Furumai T, Onaka H. Direct formation of chromopyrrolic acid from indole-3-pyruvic acid by StaD, a novel hemoprotein in indolocarbazole biosynthesis. Tetrahedron Lett. 2006;47:473–5.
Asamizu S, Hirano S, Onaka H, Koshino H, Shiro Y, Nagano S. Coupling reaction of indolepyruvic acid by StaD and its product: implications for biosynthesis of indolocarbazole and violacein. Chembiochem. 2012;13:2495–500.
Article CAS PubMed Google Scholar
Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc Natl Acad Sci USA. 2007;104:11591–6.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Hirao H, Chen H, Onaka H, Nagano S, Shaik S. Electron transfer activation of chromopyrrolic acid by cytochrome p450 en route to the formation of an antitumor indolocarbazole derivative: theory supports experiment. J Am Chem Soc. 2008;130:7170–1.
Article CAS PubMed Google Scholar
Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, et al. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. J Am Chem Soc. 2009;131:6748–62.
Article CAS PubMed Google Scholar
Ryan KS, Howard-Jones AR, Hamill MJ, Elliott SJ, Walsh CT, Drennan CL. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC. Proc Natl Acad Sci USA. 2007;104:15311–6.
Article CAS PubMed PubMed Central Google Scholar
Asamizu S, Shiro Y, Igarashi Y, Nagano S, Onaka H. Characterization and functional modification of StaC and RebC, which are involved in the pyrrole oxidation of indolocarbazole biosynthesis. Biosci Biotechnol Biochem. 2011;75:2184–93.
Article CAS PubMed Google Scholar
Xiao F, Zhou T-P, Dong S, Li T, Yun C-H, Feng Y, et al. Molecular Basis for the P450-Catalyzed sp3 C–N Glycosidic Bond Formation in Staurosporine Biosynthesis. ACS Catal. 2024;14:14274–84.
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108–60.
Article CAS PubMed PubMed Central Google Scholar
Igarashi Y, Kan Y, Fujii K, Fujita T, Harada K, Naoki H, et al. Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II. Structure determination. J Antibiot (Tokyo). 2001;54:1045–53.
Article CAS PubMed Google Scholar
Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J Antibiot (Tokyo). 2001;54:1036–44.
Article CAS PubMed Google Scholar
Onaka H, Nakaho M, Hayashi K, Igarashi Y, Furumai T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiol (Read). 2005;151:3923–33.
Ozaki T, Kurokawa Y, Hayashi S, Oku N, Asamizu S, Igarashi Y, et al. Insights into the biosynthesis of dehydroalanines in goadsporin. Chembiochem. 2016;17:218–23.
Article CAS PubMed Google Scholar
Onaka H, inventorA production method for heterocyclic peptide compounds and analogs of gordosporin. Japan Patent 5596271. 2014.
Hayashi S, Ozaki T, Asamizu S, Ikeda H, Omura S, Oku N, et al. Genome mining reveals a minimum gene set for the biosynthesis of 32-membered macrocyclic thiopeptides lactazoles. Chem Biol. 2014;21:679–88.
Article CAS PubMed Google Scholar
Schwalen CJ, Hudson GA, Kille B, Mitchell DA. Bioinformatic expansion and discovery of thiopeptide antibiotics. J Am Chem Soc. 2018;140:9494–501.
Article CAS PubMed PubMed Central Google Scholar
Kozakai R, Ono T, Hoshino S, Takahashi H, Katsuyama Y, Sugai Y, et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat Chem. 2020;12:869–77.
Article CAS PubMed Google Scholar
Ozaki T, Yamashita K, Goto Y, Shimomura M, Hayashi S, Asamizu S, et al. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun. 2017;8:14207.
Article CAS PubMed PubMed Central Google Scholar
Vinogradov AA, Shimomura M, Goto Y, Ozaki T, Asamizu S, Sugai Y, et al. Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun. 2020;11:2272.
Article CAS PubMed PubMed Central Google Scholar
Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, et al. De novo discovery of thiopeptide pseudo-natural products acting as potent and selective TNIK kinase inhibitors. J Am Chem Soc. 2022;144:20332–41.
Article CAS PubMed PubMed Central Google Scholar
Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77:400–6.
Comments (0)