Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases

Seifu DG, Purnama A, Mequanint K, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10:410–21.

Article  CAS  PubMed  Google Scholar 

Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017;2017:9831534.

Article  PubMed  PubMed Central  Google Scholar 

Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B. Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci; 2020. p. 21.

Google Scholar 

George S. Hussey JLD, Stephen F. Badylak. Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials 2018;3:15.

Hiob MA, She S, Muiznieks LD, Weiss AS. Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomater Sci Eng. 2017;3:712–23.

Article  CAS  PubMed  Google Scholar 

Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg. 2002;23:475–85.

Article  PubMed  Google Scholar 

Ipek YE, Telem GS. Design parameters for electrospun biodegradable vascular grafts. J Ind Text. 2018;47:23.

Google Scholar 

Centola M, Rainer A, Spadaccio C, De Porcellinis S, Genovese JA, Trombetta M. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication. 2010;2: 014102.

Article  CAS  PubMed  Google Scholar 

Huang SD, Liu XH, Bai CG, Lu FL, Yuan Y, Gong DJ, et al. Synergistic effect of fibronectin and hepatocyte growth factor on stable cell-matrix adhesion, re-endothelialization, and reconstitution in developing tissue-engineered heart valves. Heart Vessels. 2007;22:116–22.

Article  PubMed  Google Scholar 

Nikolaos M, Ana F, Molly SS. Biomaterials for cell transplantation. Nat Rev Mater. 2018;3:16.

Google Scholar 

Goins A, Webb AR, Allen JB. Multi-layer approaches to scaffold-based small diameter vessel engineering: A review. Mater Sci Eng C Mater Biol Appl. 2019;97:896–912.

Article  CAS  PubMed  Google Scholar 

Gafarova ER, Grebenik EA, Lazhko AE, Frolova AA, Kuryanova AS, Kurkov AV, et al. Evaluation of Supercritical CO2-Assisted Protocols in a Model of Ovine Aortic Root Decellularization. Molecules. 2020;25.

Kumar VA, Brewster LP, Caves JM, Chaikof EL. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovasc Eng Technol. 2011;2:137–48.

Article  PubMed  PubMed Central  Google Scholar 

Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA, et al. Re-Endothelialization of Decellularized Liver Scaffolds: A Step for Bioengineered Liver Transplantation. Front Bioeng Biotechnol. 2022;10: 833163.

Article  PubMed  PubMed Central  Google Scholar 

Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44:5680–742.

Article  CAS  PubMed  Google Scholar 

Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

Article  CAS  PubMed  Google Scholar 

Vaz CM, van Tuijl S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–82.

Article  CAS  PubMed  Google Scholar 

Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng. 2005;11:1876–86.

Article  CAS  PubMed  Google Scholar 

O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materialstoday. 2011;14:7.

Google Scholar 

Has C, Nystrom A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol. 2018;71–72:313–29.

Article  PubMed  Google Scholar 

Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: A systematic review and future perspectives. Int J Mol Sci. 2018;19:4117.

Google Scholar 

Han W, Singh NK, Kim JJ, Kim H, Kim BS, Park JY, et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials. 2019;224:119496.

Article  CAS  PubMed  Google Scholar 

Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol. 2022;10:951644.

Article  PubMed  PubMed Central  Google Scholar 

Koley D, Bard AJ. Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc Natl Acad Sci U S A. 2010;107:16783–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguirre-Ramírez M, Silva-Jiménez H, Banat IM, Díaz De Rienzo MA. Surfactants: physicochemical interactions with biological macromolecules. Biotechnology Letters. 2021;43:523–535.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das N, Bratby MJ, Shrivastava V, Cornall AJ, Darby CR, Boardman P, et al. Results of a seven-year, single-centre experience of the long-term outcomes of bovine ureter grafts used as novel conduits for haemodialysis fistulas. Cardiovasc Intervent Radiol. 2011;34:958–63.

Article  PubMed  Google Scholar 

Li S, Henry JJ. Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng. 2011;13:451–75.

Article  CAS  PubMed  Google Scholar 

Singh M, Park C, Roche ET. Decellularization Following Fixation of Explanted Aortic Valves as a Strategy for Preserving Native Mechanical Properties and Function. Front Bioeng Biotechnol. 2021;9:803183.

Article  PubMed  Google Scholar 

Corridon PR. In vitro investigation of the impact of pulsatile blood flow on the vascular architecture of decellularized porcine kidneys. Sci Rep. 2021;11:16965.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pantic IV, Shakeel A, Petroianu GA, Corridon PR. Analysis of vascular architecture and parenchymal damage generated by reduced blood perfusion in decellularized porcine kidneys using a gray level co-occurrence matrix. Front Cardiovasc Med. 2022;9:797283.

Article  PubMed  PubMed Central  Google Scholar 

Topuz B, Gunal G, Guler S, Aydin HM. Use of supercritical CO2 in soft tissue decellularization. Methods Cell Biol. 2020;157:49–79.

Article  CAS  PubMed  Google Scholar 

Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.

Article  CAS  PubMed  Google Scholar 

Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31:3590–5.

Article  CAS  PubMed 

Comments (0)

No login
gif