Au@Pt Nanoparticles Enhance Maturation and Contraction of Mouse Embryonic Stem Cells-Derived and Neonatal Mouse Cardiomyocytes

Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16:699–717.

Article  CAS  PubMed  Google Scholar 

Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17:341–59.

Article  PubMed  PubMed Central  Google Scholar 

Dhahri W, Sadikov Valdman T, Wilkinson D, Pereira E, Ceylan E, Andharia N, et al. In vitro matured human pluripotent stem cell-derived cardiomyocytes form grafts with enhanced structure and function in injured hearts. Circulation. 2022;145:1412–26.

Article  CAS  PubMed  Google Scholar 

Ewoldt JK, DePalma SJ, Jewett ME, Karakan MC, Lin YM, Mir Hashemian P, et al. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods. 2025;22:24–40.

Article  CAS  PubMed  Google Scholar 

Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao S, Zhao D, Wang X, Ni X, Fang X, Yu M, et al. Retinoic acid promotes metabolic maturation of human embryonic stem cell-derived cardiomyocytes. Theranostics. 2020;10:9686–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 2019;13:657–68.

Article  CAS  Google Scholar 

Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep. 2017;7:8590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YS, Yoon JW, Kim D, Choi S, Kim HK, Youm JB, et al. Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction. Exp Mol Med. 2022;54:493–502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen N, Knopf A, Westendorf C, Kraushaar U, Riedl J, Bauer H, et al. Steps toward maturation of embryonic stem cell-derived cardiomyocytes by defined physical signals. Stem Cell Rep. 2017;9:122–35.

Article  CAS  Google Scholar 

Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556:239–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu K, Seidel T, Cao-Ehlker X, Dorn T, Batcha AMN, Schneider CM, et al. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics. 2021;11:6138–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods. 2013;10:781–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crestani T, Steichen C, Neri E, Rodrigues M, Fonseca-Alaniz MH, Ormrod B, et al. Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochem Biophys Res Commun. 2020;533:376–82.

Article  CAS  PubMed  Google Scholar 

Cui C, Wang J, Qian D, Huang J, Lin J, Kingshott P, et al. Binary colloidal crystals drive spheroid formation and accelerate maturation of human-induced pluripotent stem cell-derived cardiomyocytes. ACS Appl Mater Interfaces. 2019;11:3679–89.

Article  CAS  PubMed  Google Scholar 

Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, et al. Graphene sheet-induced global maturation of cardiomyocytes derived from human induced pluripotent stem cells. ACS Appl Mater Interfaces. 2017;9:25929–40.

Article  CAS  PubMed  Google Scholar 

Xu C, Wang L, Yu Y, Yin F, Zhang X, Jiang L, et al. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater Sci. 2017;5:1810–9.

Article  CAS  PubMed  Google Scholar 

Garbern JC, Helman A, Sereda R, Sarikhani M, Ahmed A, Escalante GO, et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation. 2020;141:285–300.

Article  CAS  PubMed  Google Scholar 

Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim JU, Won KJ, et al. A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res. 2020;126:1685–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miki K, Deguchi K, Nakanishi-Koakutsu M, Lucena-Cacace A, Kondo S, Fujiwara Y, et al. ERRgamma enhances cardiac maturation with T-tubule formation in human iPSC-derived cardiomyocytes. Nat Commun. 2021;12:3596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu D, Linders A, Yamak A, Correia C, Kijlstra JD, Garakani A, et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1alpha and LDHA. Circ Res. 2018;123:1066–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ. Cardiomyocyte maturation requires TLR3 activated nuclear factor Kappa B. Stem Cells. 2018;36:1198–209.

Article  CAS  PubMed  Google Scholar 

Ng DCH, Richards DK, Mills RJ, Ho UY, Perks HL, Tucker CR, et al. Centrosome reduction promotes terminal differentiation of human cardiomyocytes. Stem Cell Rep. 2020;15:817–26.

Article  CAS  Google Scholar 

Wickramasinghe NM, Sachs D, Shewale B, Gonzalez DM, Dhanan-Krishnan P, Torre D, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2022;29:559–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Zhao N, Yin Q, Zhao X, Guo K, Xian Y, et al. Injectable hydrogels encapsulating dual-functional Au@Pt core-shell nanoparticles regulate infarcted microenvironments and enhance the therapeutic efficacy of stem cells through antioxidant and electrical integration. ACS Nano. 2023;17:2053–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He W, Liu Y, Yuan J, Yin JJ, Wu X, Hu X, et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials. 2011;32:1139–47.

Article  CAS  PubMed  Google Scholar 

Liang J, Wu M, Chen C, Mai M, Huang J, Zhu P. Roles of reactive oxygen species in cardiac differentiation, reprogramming, and regenerative therapies. Oxid Med Cell Longev. 2020;2020:2102841.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Momtahan N, Crosby CO, Zoldan J. The role of reactive oxygen species in in vitro cardiac maturation. Trends Mol Med. 2019;25:482–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif