Associations between urinary multiple metal concentrations and mitochondrial DNA copy number among occupational workers

Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465. https://doi.org/10.1038/290457a0

Article  CAS  Google Scholar 

Belyaeva EA, Sokolova TV, Emelyanova LV, Zakharova IO (2012) Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. Sci World J 2012:1–14. https://doi.org/10.1100/2012/136063

Article  CAS  Google Scholar 

Bess AS, Crocker TL, Ryde IT, Meyer JN (2012) Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 40(16):7916–7931. https://doi.org/10.1093/nar/gks532

Article  CAS  Google Scholar 

Boeniger MF, Lowry LK, Rosenberg J (1993) Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J 54(10):615–627. https://doi.org/10.1080/15298669391355134

Article  CAS  Google Scholar 

Cobine PA, Moore SA, Leary SC. 2021. Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res. https://doi.org/10.1016/j.bbamcr.2020.118867

Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198. https://doi.org/10.1016/j.dnarep.2014.03.010

Article  CAS  Google Scholar 

Fu M, Wang C, Hong S et al (2023) Multiple metals exposure and blood mitochondrial DNA copy number: a cross-sectional study from the Dongfeng-Tongji cohort. Environ Res 216:114509. https://doi.org/10.1016/j.envres.2022.114509

Article  CAS  Google Scholar 

Garceau N, Pichaud N, Couture P (2010) Inhibition of goldfish mitochondrial metabolism by in vitro exposure to Cd. Cu and Ni Aquat Toxicol 98(2):107–112. https://doi.org/10.1016/j.aquatox.2010.01.020

Article  CAS  Google Scholar 

Guo H, Liu H, Jian Z et al (2019) Nickel induces inflammatory activation via NF-κB MAPKs IRF3 and NLRP3 inflammasome signaling pathways in macrophages. Aging. https://doi.org/10.18632/aging.102570

Article  Google Scholar 

Hägg S, Jylhävä J, Wang Y, Czene K, Grassmann F (2021) Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet 140(6):849–861. https://doi.org/10.1007/s00439-020-02249-w

Article  CAS  Google Scholar 

Hoet P, Deumer G, Bernard A, Lison D, Haufroid V (2016) Urinary trace element concentrations in environmental settings: is there a value for systematic creatinine adjustment or do we introduce a bias? J Expo Sci Environ Epidemiol 26(3):296–302. https://doi.org/10.1038/jes.2015.23

Article  CAS  Google Scholar 

Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2014) Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production. Cell Biochem Biophys 70(1):367–381. https://doi.org/10.1007/s12013-014-9922-7

Article  CAS  Google Scholar 

Hu G, Long C, Hu L et al (2021) Blood chromium exposure, immune inflammation and genetic damage: exploring associations and mediation effects in chromate exposed population. J Hazard Mater 2022(425):127769. https://doi.org/10.1016/j.jhazmat.2021.127769

Article  CAS  Google Scholar 

Kupsco A, Sanchez-Guerra M, Amarasiriwardena C et al (2019) Prenatal manganese and cord blood mitochondrial DNA copy number: Effect modification by maternal anemic status. Environ Int 126:484–493. https://doi.org/10.1016/j.envint.2019.02.029

Article  CAS  Google Scholar 

D L, M BS, F G, et al. Trends in characteristics of 24-h urine samples and their relevance for human biomonitoring studies - 20 years of experience in the German Environmental Specimen Bank. Int J Hyg Environ Health. 2019;222(5):831–839. https://pubmed.ncbi.nlm.nih.gov/31030889/

Lv S, Lai X, Guo W et al (2023) Short-term exposure to multiple metals mixture and mitochondrial DNA copy number among children: a panel study. Sci Total Environ 896:165151. https://doi.org/10.1016/j.scitotenv.2023.165151

Article  CAS  Google Scholar 

Mani MS, Chakrabarty S, Mallya SP et al (2019) Whole mitochondria genome mutational spectrum in occupationally exposed lead subjects. Mitochondrion 48:60–66. https://doi.org/10.1016/j.mito.2019.04.009

Article  CAS  Google Scholar 

Mertens J, Wang QW, Kim Y et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527(7576):95–99. https://doi.org/10.1038/nature15526

Article  CAS  Google Scholar 

Meyer JN, Leung MCK, Rooney JP et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134(1):1–17. https://doi.org/10.1093/toxsci/kft102

Article  CAS  Google Scholar 

Meyer JN, Hartman JH, Mello DF (2018) Mitochondrial Toxicity. Toxicol Sci 162(1):15–23. https://doi.org/10.1093/toxsci/kfy008

Article  CAS  Google Scholar 

Moore AZ, Ding J, Tuke MA et al (2018) Influence of cell distribution and diabetes status on the association between mitochondrial DNA copy number and aging phenotypes in the In CHIANTI study. Aging Cell. https://doi.org/10.1111/acel.12683

Article  Google Scholar 

Morton J, Tan E, Leese E, Cocker J (2014) Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population. Toxicol Lett 231(2):179–193. https://doi.org/10.1016/j.toxlet.2014.08.019

Article  CAS  Google Scholar 

Picard M (2021) Blood mitochondrial DNA copy number: what are we counting? Mitochondrion 60:1–11. https://doi.org/10.1016/j.mito.2021.06.010

Article  CAS  Google Scholar 

Pietruczuk K, Jóźwik A, Ruckemann-Dziurdzińska K, Bryl E, Witkowski JM (2010) Cytoprotective effect of lithium against spontaneous and induced apoptosis of lymphoid cell line MOLT-4. Folia Histochem Cytobiol. https://doi.org/10.2478/v10042-009-0118-8

Article  Google Scholar 

Salimi A, Gholamifar E, Naserzadeh P, Hosseini M, Pourahmad J (2017) Toxicity of lithium on isolated heart mitochondria and cardiomyocyte: a justification for its cardiotoxic adverse effect. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21836

Article  Google Scholar 

Sauvé JF, Lévesque M, Huard M et al (2015) Creatinine and specific gravity normalization in biological monitoring of occupational exposures. J Occup Environ Hyg 12(2):123–129. https://doi.org/10.1080/15459624.2014.955179

Article  CAS  Google Scholar 

Smith AR, Lin PID, Rifas-Shiman SL et al (2021) Prospective associations of early pregnancy metal mixtures with mitochondria DNA copy number and telomere length in maternal and cord blood. Environ Health Perspect. https://doi.org/10.1289/EHP9294

Article  Google Scholar 

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metal Toxicity and the Environment. In: ; 2012:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

Tomokuni K, Ichiba M (1990) Interaction between nickel and lead in relation to porphyrin metabolism in mice. Ind Health 28(3):145–149. https://doi.org/10.2486/indhealth.28.145

Article  CAS  Google Scholar 

Vriens A, Nawrot TS, Janssen BG et al (2019) Exposure to environmental pollutants and their association with biomarkers of aging: a multipollutant approach. Environ Sci Technol 53(10):5966–5976. https://doi.org/10.1021/acs.est.8b07141

Article  CAS  Google Scholar 

Wang T, Tu Y, Wang K et al (2021) Associations of blood lead levels with multiple genotoxic biomarkers among workers in China: a population-based study. Environ Pollut 273:116181. https://doi.org/10.1016/j.envpol.2020.116181

Article  CAS  Google Scholar 

Wen S, Gao J, Zhang L, Zhou H, Fang D, Feng S (2016) p53 increase mitochondrial copy number via up-regulation of mitochondrial transcription factor A in colorectal cancer. Oncotarget. https://doi.org/10.18632/oncotarget.12514

Article  Google Scholar 

Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23(9):8244–8259. https://doi.org/10.1007/s11356-016-6333-x

Article  CAS  Google Scholar 

Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci 94(2):514–519. https://doi.org/10.1073/pnas.94.2.514

Article  CAS  Google Scholar 

Zhou T, Guo J, Zhang J et al (2020) Sex-specific differences in cognitive abilities associated with childhood cadmium and manganese exposures in school-age children: a prospective cohort study. Biol Trace Elem Res 193(1):89–99. https://doi.org/10.1007/s12011-019-01703-9

Article  CAS  Google Scholar 

Comments (0)

No login
gif