Gilchrist CA, Turner SD, Riley MF, Petri WA Jr, Hewlett EL. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev. 2015;28(3):541–63.
Article CAS PubMed PubMed Central Google Scholar
Quainoo S, Coolen JP, van Hijum SA, Huynen MA, Melchers WJ, van Schaik W, Wertheim HF. Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clin Microbiol Rev. 2017;30(4):1015–63.
Article CAS PubMed PubMed Central Google Scholar
Bar-Meir M, Berliner E, Kashat L, Zeevi DA, Assous MV. The utility of MALDI-TOF MS for outbreak investigation in the neonatal intensive care unit. Eur J Pediatr. 2020;179:1843–9.
Article CAS PubMed PubMed Central Google Scholar
Khennouchi NCEH, Loucif L, Boutefnouchet N, Allag H, Rolain JM. MALDI-TOF MS as a tool to detect a nosocomial outbreak of extended-spectrum-β-lactamase-and ArmA methyltransferase-producing Enterobacter cloacae clinical isolates in Algeria. Antimicrob Agents Chemother. 2015;59(10):6477–83.
Article PubMed PubMed Central Google Scholar
Fiamanya S, Cipolla L, Prieto M, Stelling J. Exploring the value of MALDI-TOF MS for the detection of clonal outbreaks of Burkholderia contaminans. J Microbiol Methods. 2021;181:106130.
Article CAS PubMed Google Scholar
Giraud-Gatineau A, Texier G, Fournier PE, Raoult D, Chaudet H. Using MALDI-TOF spectra in epidemiological surveillance for the detection of bacterial subgroups with a possible epidemic potential. BMC Infect Dis. 2021;21:1–10.
Dauwalder O, Cecchini T, Rasigade JP, Vandenesch F. Matrix assisted laser desorption ionisation/time of flight (MALDI/TOF) mass spectrometry is not done revolutionizing clinical microbiology diagnostic. Clin Microbiol Infect. 2023;29(2):127–9.
Article CAS PubMed Google Scholar
Cuénod A, Aerni M, Bagutti C, Bayraktar B, Boz ES, Carneiro CB, et al. Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains. Clin Microbiol Infect. 2023;29(2):190–9.
Jun SY, Kim YA, Lee SJ, Jung WW, Kim HS, Kim SS, Lee K. Performance comparison between Fourier-transform infrared spectroscopy–based IR biotyper and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for strain diversity. Ann Lab Med. 2023;43(2):174–9.
Article CAS PubMed Google Scholar
Rakovitsky N, Frenk S, Kon H, Schwartz D, Temkin E, Solter E, Lellouche J. Fourier transform infrared spectroscopy is a new option for outbreak investigation: a retrospective analysis of an extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Journal of Clin Microbiol. 2020;58(5):10–1128.
Silva L, Rodrigues C, Lira A, Leão M, Mota M, Lopes P, Peixe L. Fourier transform infrared (FT-IR) spectroscopy typing: a real-time analysis of an outbreak by carbapenem-resistant Klebsiella pneumoniae. European J Clin Microbiol Infect Dis. 2020;39:2471–5.
Sousa C, Silva L, Grosso F, Lopes J, Peixe L. Development of a FTIR-ATR based model for typing clinically relevant Acinetobacter baumannii clones belonging to ST98, ST103, ST208 and ST218. J Photochem Photobiol B. 2014;133:108–14.
Article CAS PubMed Google Scholar
Preisner O, Guiomar R, Machado J, Menezes JC, Lopes JA. Application of fourier transform infrared spectroscopy and chemometrics for differentiation of salmonella enterica serovar enteritidis phage types. Appl Environ Microbiol. 2010;76(11):3538–44.
Article CAS PubMed PubMed Central Google Scholar
Martak D, Valot B, Sauget M, Cholley P, Thouverez M, Bertrand X, et al. Fourier-transform infra red spectroscopy can quickly type gram-negative bacilli responsible for hospital outbreaks. Front Microbiol. 2019;10:1440.
Article PubMed PubMed Central Google Scholar
Kon H, Lurie-Weinberger M, Cohen A, Metsamber L, Keren-Paz A, Schwartz D, et al. Occurrence, typing, and resistance genes of ESBL/AmpC-producing enterobacterales in fresh vegetables purchased in central Israel. Antibiotics. 2023;12(10):1528.
Article CAS PubMed PubMed Central Google Scholar
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.
Article CAS PubMed PubMed Central Google Scholar
Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355–62.
Khan AU, Maryam L, Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017;17:1–12.
Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother. 2011;55(12):5952–4.
Article CAS PubMed PubMed Central Google Scholar
Liu Z, Xiao X, Li Y, Liu Y, Li R, Wang Z. Emergence of IncX3 plasmid-harboring blaNDM–5 dominated by Escherichia coli ST48 in a goose farm in Jiangsu. China Front Microbiol. 2019;10:2002.
Zou H, Jia X, Liu H, Li S, Wu X, Huang S. Emergence of NDM-5-producing escherichia coli in a teaching hospital in chongqing, china: IncF-type plasmids may contribute to the prevalence of blaNDM–5. Front Microbiol. 2020;11:334.
Article PubMed PubMed Central Google Scholar
Ahmad N, Khalid S, Ali SM, Khan AU. Occurrence of blaNDM variants among enterobacteriaceae from a neonatal intensive care unit in a Northern India hospital. Front Microbiol. 2018;9:407.
Article PubMed PubMed Central Google Scholar
Baloch Z, Lv L, Yi L, Wan M, Aslam B, Yang J, et al. Emergence of almost identical f36:A-:B32 plasmids carrying blandm-5 and QEPA in Escherichia coli from both Pakistan and Canada. Infect Drug Resist. 2019;12:3981–5.
Article CAS PubMed PubMed Central Google Scholar
Lowe M, Kock MM, Coetzee J, Hoosien E, Peirano G, Strydom KA, et al. Klebsiella pneumoniae ST307 with blaoxa-181, South Africa, 2014–2016. Emerg Infect Dis. 2019;25(4):739–47.
Article PubMed PubMed Central Google Scholar
Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, et al. Diversity, virulence, and antimicrobial resistance of the KPCproducing Klebsiella pneumoniae ST307 clone. Microb Genom. 2017;3(4):e000110.
PubMed PubMed Central Google Scholar
Heiden SE, Hübner NO, Bohnert JA, Heidecke CD, Kramer A, Balau V, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020;12(1):1–15.
Boonstra MB, Spijkerman DC, Voor AF, van der Laan RJ, Bode LG, van Vianen W, Severin JA. An outbreak of ST307 extended-spectrum beta-lactamase (ESBL)–producing Klebsiella pneumoniae in a rehabilitation center: an unusual source and route of transmission. Infect Control Hosp Epidemiol. 2020;41(1):31–6.
Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. Reproducibility of broth microdilution MICs for the novel siderophore cephalosporin, cefiderocol, determined using iron-depleted cation-adjusted Mueller–Hinton broth. Diagn Microbiol Infect Dis. 2019;94(4):321–5.
Article CAS PubMed Google Scholar
Kon H, Lurie-Weinberger MN, Lugassy C, Chen D, Schechner V, Schwaber MJ, et al. Use of Fourier-transform infrared spectroscopy for real-time outbreak investigation of OXA-48-producing Escherichia coli. J Antimicrob Chemother. 2024;79(2):349–53.
Article CAS PubMed Google Scholar
Novais Â, Gonçalves AB, Ribeiro TG, Freitas AR, Méndez G, Mancera L, et al. Development and validation of a quick, automated, and reproducible ATR FT-IR spectroscopy machine-learning model for Klebsiella pneumoniae typing. J Clin Microbiol. 2024;62(2):e01211-e1223.
Comments (0)