Bowe B, Xie Y, Li T, Mokdad AH, Xian H, Yan Y, et al. Changes in the US burden of chronic kidney disease from 2002 to 2016: an analysis of the global burden of disease study. JAMA Netw Open. 2018;1(7): e184412-e. https://doi.org/10.1001/jamanetworkopen.2018.4412.
Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9. https://doi.org/10.1001/jama.2016.6361.
Article CAS PubMed PubMed Central Google Scholar
Grubbs V, Lin F, Vittinghoff E, Shlipak MG, Peralta CA, Bansal N, et al. Body mass index and early kidney function decline in young adults: a longitudinal analysis of the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Kidney Dis. 2014;63(4):590–7. https://doi.org/10.1053/j.ajkd.2013.10.055.
Long-term complications in youth-onset type 2 diabetes. N Engl J Med. 2021;385(5):416–26. https://doi.org/10.1056/NEJMoa2100165.
Blowey DL, Flynn JT, Warady BA. Are there consequences of adolescent blood pressure on kidney function in adulthood? Am J Kidney Dis. 2019;74(4):567–9. https://doi.org/10.1053/j.ajkd.2019.05.006.
Murray R, Zimmerman T, Agarwal A, Palevsky PM, Quaggin S, Rosas SE, et al. Kidney-related research in the united states: a position statement from the National Kidney Foundation and the American Society of Nephrology. Am J Kidney Dis. 2021;78(2):161–7. https://doi.org/10.1053/j.ajkd.2021.04.006.
Article PubMed PubMed Central Google Scholar
Skorecki K, Chertow GM, Marsden PA, Brenner BM, Rector FC. Brenner & Rector’s the kidney. Philadelphia: Elsevier; 2016.
de Boer IH, Alpers CE, Azeloglu EU, Balis UGJ, Barasch JM, Barisoni L, et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 2021;99(3):498–510. https://doi.org/10.1016/j.kint.2020.08.039.
Article CAS PubMed PubMed Central Google Scholar
Murray R, Kramer H. Realizing the goals of the advancing american kidney health initiative: toward a better future for kidney disease research funding. Adv Chronic Kidney Dis. 2022;29(1):76–82. https://doi.org/10.1053/j.ackd.2022.01.005.
Williams CEC, Lamond M, Marro J, Chetwynd AJ, Oni L. A narrative review of potential drug treatments for nephritis in children with IgA vasculitis (HSP). Clin Rheumatol. 2023;42(12):3189–200. https://doi.org/10.1007/s10067-023-06781-8.
Article PubMed PubMed Central Google Scholar
Perkovic V, Craig JC, Chailimpamontree W, Fox CS, Garcia-Garcia G, Benghanem Gharbi M, et al. Action plan for optimizing the design of clinical trials in chronic kidney disease. Kidney Int Suppl. 2017;7(2):138–44. https://doi.org/10.1016/j.kisu.2017.07.009.
Levey AS, Gansevoort RT, Coresh J, Inker LA, Heerspink HL, Grams ME, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis. 2020;75(1):84–104. https://doi.org/10.1053/j.ajkd.2019.06.009.
Article CAS PubMed Google Scholar
Braunwald E. SGLT2 inhibitors: the statins of the 21st century. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab765.
Article PubMed PubMed Central Google Scholar
Li J, Tummalapalli SL, Mendu ML. Advancing American Kidney Health and the role of sodium-glucose cotransporter-2 inhibitors. Clin J Am Soc Nephrol. 2021;16(10):1584. https://doi.org/10.2215/CJN.05450421.
Article CAS PubMed PubMed Central Google Scholar
Chao EC, Henry RR. SGLT2 inhibition—a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–9. https://doi.org/10.1038/nrd3180.
Article CAS PubMed Google Scholar
Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem. 2008;51(5):1145–9. https://doi.org/10.1021/jm701272q.
Article CAS PubMed Google Scholar
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.
Article CAS PubMed Google Scholar
Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34. https://doi.org/10.1056/NEJMoa1515920.
Article CAS PubMed Google Scholar
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744.
Article CAS PubMed Google Scholar
Kula AJ. Considerations and possibilities for sodium-glucose cotransporter 2 inhibitors in pediatric CKD. Pediatr Nephrol. 2022;37(10):2267–76. https://doi.org/10.1007/s00467-022-05456-x.
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816.
Article CAS PubMed Google Scholar
Wheeler DC, Toto RD, Stefansson BV, Jongs N, Chertow GM, Greene T, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021. https://doi.org/10.1016/j.kint.2021.03.033.
Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2204233
Mark PB, Sattar N. Implementation, not hesitation, for SGLT2 inhibition as foundational therapy for chronic kidney disease. Lancet. 2022;400(10365):1745–7. https://doi.org/10.1016/S0140-6736(22)02164-X.
Article CAS PubMed Google Scholar
Meraz-Muñoz AY, Weinstein J, Wald R. eGFR decline after SGLT2 inhibitor initiation: the tortoise and the hare reimagined. Kidney360. 2021;2(6):1042. https://doi.org/10.34067/KID.0001172021.
Article PubMed PubMed Central Google Scholar
Lava SAG, Laurence C, Di Deo A, Sekarski N, Burch M, Della PO. Dapagliflozin and empagliflozin in paediatric indications: a systematic review. Pediatr Drugs. 2024;26(3):229–43. https://doi.org/10.1007/s40272-024-00623-z.
van den Belt SM, Heerspink HJL, Gracchi V, de Zeeuw D, Wühl E, Schaefer F, Group obotET. Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol. 2018;29(8):2225–33. https://doi.org/10.1681/asn.2018010036.
Article PubMed PubMed Central Google Scholar
Cattran DC, Greenwood C, Ritchie S. Long-term benefits of angiotensin-converting enzyme inhibitor therapy in patients with severe immunoglobulin a nephropathy: a comparison to patients receiving treatment with other antihypertensive agents and to patients receiving no therapy. Am J Kidney Dis. 1994;23(2):247–54. https://doi.org/10.1016/S0272-6386(12)80980-2.
Article CAS PubMed Google Scholar
Levin A, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, et al. Executive summary of the KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease: known knowns and known unknowns. Kidney Int. 2024;105(4):684–701. https://doi.org/10.1016/j.kint.2023.10.016.
Maschio G, Alberti D, Janin G, Locatelli F, Mann JFE, et al. Effect of the angiotensin-converting–enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med. 1996;334(15):939–45. https://doi.org/10.1056/NEJM199604113341502.
Article CAS PubMed Google Scholar
Coppo R, Peruzzi L, A
Comments (0)