Kan WC, Chen YC, Wu VC, Shiao CC. Vancomycin-associated acute kidney injury: a narrative review from pathophysiology to clinical application. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23042052.
Article PubMed PubMed Central Google Scholar
Tantranont N, Luque Y, Hsiao M, Haute C, Gaber L, Barrios R, et al. Vancomycin-associated tubular casts and vancomycin nephrotoxicity. Kidney Int Rep. 2021;6(7):1912–22. https://doi.org/10.1016/j.ekir.2021.04.035.
Article PubMed PubMed Central Google Scholar
Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9(12):2036–43. https://doi.org/10.2215/CJN.05190514.
Article PubMed PubMed Central Google Scholar
Kimura T, Sunakawa K, Matsuura N, Kubo H, Shimada S, Yago K. Population pharmacokinetics of arbekacin, vancomycin, and panipenem in neonates. Antimicrob Agents Chemother. 2004;48(4):1159–67. https://doi.org/10.1128/AAC.48.4.1159-1167.2004.
Article PubMed PubMed Central Google Scholar
Smits A, Pauwels S, Oyaert M, Peersman N, Spriet I, Saegeman V, et al. Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis. 2018;37(8):1503–10. https://doi.org/10.1007/s10096-018-3277-8.
Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1(3):184–94. https://doi.org/10.1016/S2352-4642(17)30069-X.
Article PubMed PubMed Central Google Scholar
Hazlewood KA, Brouse SD, Pitcher WD, Hall RG. Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? Am J Med. 2010;123(2):182e1-187. https://doi.org/10.1016/j.amjmed.2009.05.031.
Al-Maqbali JS, Shukri ZA, Sabahi NA, Al-Riyami I, Al Alawi AM. Vancomycin therapeutic drug monitoring (TDM) and Its association with clinical outcomes: a retrospective cohort. J Infect Public Health. 2022;15(5):589–93. https://doi.org/10.1016/j.jiph.2022.04.007.
Bellos I, Daskalakis G, Pergialiotis V. Relationship of vancomycin trough levels with acute kidney injury risk: an exposure-toxicity meta-analysis. J Antimicrob Chemother. 2020;75(10):2725–34. https://doi.org/10.1093/jac/dkaa184.
Hartman SJF, Bruggemann RJ, Orriens L, Dia N, Schreuder MF, de Wildt SN. Pharmacokinetics and target attainment of antibiotics in critically ill children: a systematic review of current literature. Clin Pharmacokinet. 2020;59(2):173–205. https://doi.org/10.1007/s40262-019-00813-w.
Bhargava V, Malloy M, Fonseca R. The association between vancomycin trough concentrations and acute kidney injury in the neonatal intensive care unit. BMC Pediatr. 2017;17(1):50. https://doi.org/10.1186/s12887-017-0777-0.
Article PubMed PubMed Central Google Scholar
Dawoud TH, Khan N, Afzal U, Varghese N, Rahmani A, Abu-Sa’da O. Assessment of initial vancomycin trough levels and risk factors of vancomycin-induced nephrotoxicity in neonates. Eur J Hosp Pharm. 2022;29(1):44–9. https://doi.org/10.1136/ejhpharm-2019-002181.
Chung E, Seto W. Association between vancomycin therapeutic drug monitoring and clinical outcomes in treating neonatal sepsis. Int J Antimicrob Agents. 2023;62(4): 106958. https://doi.org/10.1016/j.ijantimicag.2023.106958.
Viel-Thériault I, Martin B, Thompson-Desormeaux F, Blackburn J, Moussa A, Autmizguine J. Vancomycin drug monitoring in infants with CoNS sepsis-target attainment, microbiological response and nephrotoxicity. J Perinatol. 2020;40(1):97–104. https://doi.org/10.1038/s41372-019-0519-2.
Miyai T, Takekuma Y, Kashiwagi H, Sato Y, Nashimoto S, Sugawara M, et al. Risk factor analysis of vancomycin-induced nephrotoxicity in paediatric patients aged 0–1 year using japanese medical database. Biol Pharm Bull. 2023;46(6):817–23. https://doi.org/10.1248/bpb.b23-00013.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29(372): n71. https://doi.org/10.1136/bmj.n71.
Sinha Ray A, Haikal A, Hammoud KA, Yu ASL. Vancomycin and the risk of aki: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11(12):2132–40. https://doi.org/10.2215/CJN.05920616.
Article PubMed PubMed Central Google Scholar
Hu Q, Li SJ, Chen QL, Chen H, Li Q, Wang M. risk factors for acute kidney injury in critically ill neonates: a systematic review and meta-analysis. Front Pediatr. 2021;9: 666507. https://doi.org/10.3389/fped.2021.666507.
Article PubMed PubMed Central Google Scholar
Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2021 May 3, 2021; Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.
Erden M, Uyanik E, Polat M, Ozbek IY, Yarali H, Mumusoglu S. The effect of < /=6 cm sized noncavity-distorting intramural fibroids on in vitro fertilization outcomes: a systematic review and meta-analysis. Fertil Steril. 2023;119(6):996–1007. https://doi.org/10.1016/j.fertnstert.2023.02.018.
American Thoracic S, Infectious Diseases Society of A. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. https://doi.org/10.1164/rccm.200405-644ST.
Chen Q, Wan J, Shen W, Lin W, Lin X, Huang Z, et al. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative Staphylococcus infection: a retrospective study based on electronic medical records. Pediatr Neonatol. 2022;63(3):247–54. https://doi.org/10.1016/j.pedneo.2021.11.010.
Tang Z, Guan J, Li J, Yu Y, Qian M, Cao J, et al. Determination of vancomycin exposure target and individualised dosing recommendations for neonates: model-informed precision dosing. Int J Antimicrob Agents. 2021;57(3): 106300. https://doi.org/10.1016/j.ijantimicag.2021.106300.
Shin BS, Shin SH, Park SG, Kim EK, Kim HS. Factors associated with acute kidney injury among preterm infants administered vancomycin: a retrospective cohort study. BMC Pediatr. 2023;23(1):296. https://doi.org/10.1186/s12887-023-04085-z.
Article PubMed PubMed Central Google Scholar
Qin X, Tsoi MF, Zhao X, Zhang L, Qi Z, Cheung BMY. Vancomycin-associated acute kidney injury in Hong Kong in 2012–2016. BMC Nephrol. 2020;21(1):41. https://doi.org/10.1186/s12882-020-1704-4.
Article PubMed PubMed Central Google Scholar
Bartlett JW, Gillon J, Hale J, Jimenez-Truque N, Banerjee R. Incidence of acute kidney injury among infants in the neonatal intensive care unit receiving vancomycin with either piperacillin/tazobactam or cefepime. J Pediatr Pharmacol Ther. 2020;25(6):521–7. https://doi.org/10.5863/1551-6776-25.6.521.
Article PubMed PubMed Central Google Scholar
Li Z, Xu F, Hu W, Xiao Z, Liu H, Li J, et al. Comparison of the nephrotoxicity of low trough concentration and high trough concentration of vancomycin in neonates. Phar Care Res. 2016;16(01):29–33.
Tao X, Chen H, Pei B, Duan Y, Ma S. Effects of different trough concentrations of vancomycin on the renal function in neonates. Chin J Antibiot. 2019;44(5):628–31. https://doi.org/10.3969/j.issn.1001-8689.2019.05.017.
Chen Q, Wan J, Lin M. Correlation analysis between vancomycin trough concentrations and nephrotoxicity in neonates. J Mod Med Health. 2021;37(23).
Mahajan A, Marijic J. Hemodynamic management: anesthesia for congenital heart disease; 2008.
Maloni TM, Belucci TR, Malagutti SR, Furtado GHC. Describing vancomycin serum levels in pediatric intensive care unit (ICU) patients: are expected goals being met. BMC Pediatr. 2019;19(1):240. https://doi.org/10.1186/s12887-019-1602-8.
Comments (0)