Steinmetz JD, Seeher KM, Schiess N, Nichols E, Cao B, Servili C, Dua T (2024) Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the global burden of disease study 2021. Lancet Neurol. https://doi.org/10.1016/S1474-4422(24)00038-3
Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatr 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045
Port RJ, Rumsby M, Brown G, Harrison IF, Amjad A, Bale CJ (2021) People with parkinson’s disease: what symptoms do they most want to improve and how does this change with disease duration? J Parkinson’s Dis 11(2):715–724. https://doi.org/10.3233/JPD-202346
Mammen JR, Speck RM, Stebbins GT, Müller MLTM, Yang PT, Campbell M, Adams JL (2023) Relative meaningfulness and impacts of symptoms in people with early-stage Parkinson’s Disease. J Parkinson’s Dis. https://doi.org/10.3233/JPD-225068
Sobinov AR, Bensmaia SJ (2021) The neural mechanisms of manual dexterity. Nat Rev Neurosci 22(12):741–757. https://doi.org/10.1038/s41583-021-00528-7
Article CAS PubMed PubMed Central Google Scholar
De Vleeschhauwer J, Broeder S, Janssens L, Heremans E, Nieuwboer A, Nackaerts E (2021) Impaired touchscreen skills in Parkinson’s disease and effects of medication. Mov Disord Clini Pract 8(4):546–554. https://doi.org/10.1002/mdc3.13179
Cohen N, Kizony R (2024) Patient perspectives on upper-limb daily function in Parkinson’s Disease. Mov Disord Clin Pract. https://doi.org/10.1002/mdc3.14277
Article PubMed PubMed Central Google Scholar
Rovini E, Maremmani C, Cavallo F (2019) Automated systems based on wearable sensors for the management of Parkinson’s disease at home: a systematic review. Telemed Health 25(3):167–183. https://doi.org/10.1089/tmj.2018.0035
Broeder S, Boccuni L, Vandendoorent B, Verheyden G, Meesen R, Nieuwboer A (2022) Novel insights into the effects of levodopa on the up- and downstrokes of writing sequences. J Neural Transm 129(4):379–386. https://doi.org/10.1007/s00702-022-02493-6
Article CAS PubMed Google Scholar
Bologna M, Guerra A, Paparella G, Giordo L, Fegatelli DA, Vestri AR, Berardelli A (2018) Neurophysiological correlates of bradykinesia in Parkinson’s disease. Brain. https://doi.org/10.1093/brain/awy155
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A (2020) Evolving concepts on bradykinesia. Brain 143(3):727–750. https://doi.org/10.1093/brain/awz344
Kübel S, Stegmayer K, Vanbellingen T, Walther S, Bohlhalter S (2018) Deficient supplementary motor area at rest: neural basis of limb kinetic deficits in Parkinson’s disease. Hum Brain Mapp 39(9):3691–3700. https://doi.org/10.1002/hbm.24204
Article PubMed PubMed Central Google Scholar
Bloem BR, de Vries NM, Ebersbach G (2015) Nonpharmacological treatments for patients with Parkinson’s disease. Mov Disord 30(11):1504–1520. https://doi.org/10.1002/mds.26363
Vanbellingen T, van Beek J, Nyffeler T, Urwyler P, Nef T, Bohlhalter S (2021) Tablet app-based dexterity-training in patients with Parkinson’s disease: pilot feasibility study. Ann Phys Rehabil Med 64(4):101419. https://doi.org/10.1016/j.rehab.2020.06.004
Magill R, Anderson D (2007) Motor learning and control: concepts and applications, 12th edn. McGraw-hill education, New York, New York, USA
Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF (2017) The many facets of motor learning and their relevance for Parkinson’s disease. Clin Neurophysiol 128(7):1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042
Article PubMed PubMed Central Google Scholar
Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008
Article CAS PubMed PubMed Central Google Scholar
Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Benali H (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. https://doi.org/10.1016/j.bbr.2008.11.012
Kantak SS, Winstein CJ (2012) Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res 228(1):219–231. https://doi.org/10.1016/j.bbr.2011.11.028
Cristini J, Parwanta Z, De Las Heras B, Medina-Rincon A, Paquette C, Doyon J, Roig M (2023) Motor memory consolidation deficits in parkinson’s disease: a systematic review with meta-analysis. J Parkinson’s Dis. https://doi.org/10.3233/JPD-230038
Nackaerts E, Ginis P, Heremans E, Swinnen SP, Vandenberghe W, Nieuwboer A (2020) Retention of touchscreen skills is compromised in Parkinson’s disease. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.112265
Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BCM, Swinnen SP, Vandenberghe W, Nieuwboer A (2016) Relearning of writing skills in parkinson’s disease after intensive amplitude training. Mov Disord. https://doi.org/10.1002/mds.26565
Heremans E, Nackaerts E, Vervoort G, Broeder S, Swinnen SP, Nieuwboer A (2016) Impaired retention of motor learning of writing skills in patients with Parkinson’s disease with freezing of gait. PLoS ONE 11(2):1–13. https://doi.org/10.1371/journal.pone.0148933
Nackaerts E, Nieuwboer A, Farella E (2017) Technology-assisted rehabilitation of writing skills in parkinson’s disease: visual cueing versus intelligent feedback. Parkinson’s Dis. https://doi.org/10.1155/2017/9198037
Ellis TD, Earhart GM (2021) Digital therapeutics in parkinson’s disease: practical applications and future potential. J Parkinson’s Dis 11(s1):S95–S101. https://doi.org/10.3233/JPD-202407
Flynn A, Preston E, Dennis S, Canning CG, Allen NE (2021) Home-based exercise monitored with telehealth is feasible and acceptable compared to centre-based exercise in Parkinson’s disease: a randomised pilot study. Clin Rehabil 35(5):728–739. https://doi.org/10.1177/0269215520976265
Allen NE, Song J, Paul SS, Smith S, O’Duffy J, Schmidt M, Canning CG (2017) An interactive videogame for arm and hand exercise in people with Parkinson’s disease: a randomized controlled trial. Parkinson Relat Disord. https://doi.org/10.1016/j.parkreldis.2017.05.011
De Vleeschhauwer J, Nackaerts E, D’Cruz N, Vandendoorent B, Micca L, Vandenberghe W, Nieuwboer A (2022) Associations between resting-state functional connectivity changes and prolonged benefits of writing training in Parkinson’s disease. J Neurol 269(9):4696–4707. https://doi.org/10.1007/s00415-022-11098-8
D’Cruz N, De Vleeschhauwer J, Putzolu M, Nackaerts E, Gilat M, Nieuwboer A (2024) Sensorimotor network segregation predicts long-term learning of writing skills in Parkinson’s Disease. Brain Sci. https://doi.org/10.3390/brainsci14040376
Article PubMed PubMed Central Google Scholar
Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):1–21. https://doi.org/10.1038/s41572-021-00280-3
Lingo VanGilder J, Lopez-Lennon C, Paul SS, Dibble LE, Duff K, Schaefer SY (2021) Relating global cognition with upper-extremity motor skill retention in individuals with mild-to-moderate parkinson’s disease. Front Rehabilit Sci 2(October):1–8. https://doi.org/10.3389/fresc.2021.754118
Pauwels L, Vancleef K, Swinnen SP, Beets IAM (2015) Challenge to promote change: both young and older adults benefit from contextual interference. Front Aging Neurosci 7(157):1–12. https://doi.org/10.3389/fnagi.2015.00157
Sidaway B, Ala B, Baughman K, Glidden J, Cowie S, Peabody A, Wright DL (2016) Contextual Interference Can Facilitate Motor Learning in Older Adults and in Individuals With Parkinson’s Disease. J Mot Behav. https://doi.org/10.1080/00222895.2016.1152221
Comments (0)