The effects of task-specific home-based touchscreen training in people with Parkinson’s disease: a pilot randomized controlled trial

Steinmetz JD, Seeher KM, Schiess N, Nichols E, Cao B, Servili C, Dua T (2024) Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the global burden of disease study 2021. Lancet Neurol. https://doi.org/10.1016/S1474-4422(24)00038-3

Article  Google Scholar 

Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatr 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045

Article  CAS  Google Scholar 

Port RJ, Rumsby M, Brown G, Harrison IF, Amjad A, Bale CJ (2021) People with parkinson’s disease: what symptoms do they most want to improve and how does this change with disease duration? J Parkinson’s Dis 11(2):715–724. https://doi.org/10.3233/JPD-202346

Article  Google Scholar 

Mammen JR, Speck RM, Stebbins GT, Müller MLTM, Yang PT, Campbell M, Adams JL (2023) Relative meaningfulness and impacts of symptoms in people with early-stage Parkinson’s Disease. J Parkinson’s Dis. https://doi.org/10.3233/JPD-225068

Article  Google Scholar 

Sobinov AR, Bensmaia SJ (2021) The neural mechanisms of manual dexterity. Nat Rev Neurosci 22(12):741–757. https://doi.org/10.1038/s41583-021-00528-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Vleeschhauwer J, Broeder S, Janssens L, Heremans E, Nieuwboer A, Nackaerts E (2021) Impaired touchscreen skills in Parkinson’s disease and effects of medication. Mov Disord Clini Pract 8(4):546–554. https://doi.org/10.1002/mdc3.13179

Article  Google Scholar 

Cohen N, Kizony R (2024) Patient perspectives on upper-limb daily function in Parkinson’s Disease. Mov Disord Clin Pract. https://doi.org/10.1002/mdc3.14277

Article  PubMed  PubMed Central  Google Scholar 

Rovini E, Maremmani C, Cavallo F (2019) Automated systems based on wearable sensors for the management of Parkinson’s disease at home: a systematic review. Telemed Health 25(3):167–183. https://doi.org/10.1089/tmj.2018.0035

Article  Google Scholar 

Broeder S, Boccuni L, Vandendoorent B, Verheyden G, Meesen R, Nieuwboer A (2022) Novel insights into the effects of levodopa on the up- and downstrokes of writing sequences. J Neural Transm 129(4):379–386. https://doi.org/10.1007/s00702-022-02493-6

Article  CAS  PubMed  Google Scholar 

Bologna M, Guerra A, Paparella G, Giordo L, Fegatelli DA, Vestri AR, Berardelli A (2018) Neurophysiological correlates of bradykinesia in Parkinson’s disease. Brain. https://doi.org/10.1093/brain/awy155

Article  PubMed  Google Scholar 

Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A (2020) Evolving concepts on bradykinesia. Brain 143(3):727–750. https://doi.org/10.1093/brain/awz344

Article  PubMed  Google Scholar 

Kübel S, Stegmayer K, Vanbellingen T, Walther S, Bohlhalter S (2018) Deficient supplementary motor area at rest: neural basis of limb kinetic deficits in Parkinson’s disease. Hum Brain Mapp 39(9):3691–3700. https://doi.org/10.1002/hbm.24204

Article  PubMed  PubMed Central  Google Scholar 

Bloem BR, de Vries NM, Ebersbach G (2015) Nonpharmacological treatments for patients with Parkinson’s disease. Mov Disord 30(11):1504–1520. https://doi.org/10.1002/mds.26363

Article  PubMed  Google Scholar 

Vanbellingen T, van Beek J, Nyffeler T, Urwyler P, Nef T, Bohlhalter S (2021) Tablet app-based dexterity-training in patients with Parkinson’s disease: pilot feasibility study. Ann Phys Rehabil Med 64(4):101419. https://doi.org/10.1016/j.rehab.2020.06.004

Article  PubMed  Google Scholar 

Magill R, Anderson D (2007) Motor learning and control: concepts and applications, 12th edn. McGraw-hill education, New York, New York, USA

Google Scholar 

Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF (2017) The many facets of motor learning and their relevance for Parkinson’s disease. Clin Neurophysiol 128(7):1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042

Article  PubMed  PubMed Central  Google Scholar 

Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Benali H (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. https://doi.org/10.1016/j.bbr.2008.11.012

Article  PubMed  Google Scholar 

Kantak SS, Winstein CJ (2012) Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res 228(1):219–231. https://doi.org/10.1016/j.bbr.2011.11.028

Article  PubMed  Google Scholar 

Cristini J, Parwanta Z, De Las Heras B, Medina-Rincon A, Paquette C, Doyon J, Roig M (2023) Motor memory consolidation deficits in parkinson’s disease: a systematic review with meta-analysis. J Parkinson’s Dis. https://doi.org/10.3233/JPD-230038

Article  Google Scholar 

Nackaerts E, Ginis P, Heremans E, Swinnen SP, Vandenberghe W, Nieuwboer A (2020) Retention of touchscreen skills is compromised in Parkinson’s disease. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.112265

Article  PubMed  Google Scholar 

Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BCM, Swinnen SP, Vandenberghe W, Nieuwboer A (2016) Relearning of writing skills in parkinson’s disease after intensive amplitude training. Mov Disord. https://doi.org/10.1002/mds.26565

Article  PubMed  Google Scholar 

Heremans E, Nackaerts E, Vervoort G, Broeder S, Swinnen SP, Nieuwboer A (2016) Impaired retention of motor learning of writing skills in patients with Parkinson’s disease with freezing of gait. PLoS ONE 11(2):1–13. https://doi.org/10.1371/journal.pone.0148933

Article  CAS  Google Scholar 

Nackaerts E, Nieuwboer A, Farella E (2017) Technology-assisted rehabilitation of writing skills in parkinson’s disease: visual cueing versus intelligent feedback. Parkinson’s Dis. https://doi.org/10.1155/2017/9198037

Article  Google Scholar 

Ellis TD, Earhart GM (2021) Digital therapeutics in parkinson’s disease: practical applications and future potential. J Parkinson’s Dis 11(s1):S95–S101. https://doi.org/10.3233/JPD-202407

Article  Google Scholar 

Flynn A, Preston E, Dennis S, Canning CG, Allen NE (2021) Home-based exercise monitored with telehealth is feasible and acceptable compared to centre-based exercise in Parkinson’s disease: a randomised pilot study. Clin Rehabil 35(5):728–739. https://doi.org/10.1177/0269215520976265

Article  PubMed  Google Scholar 

Allen NE, Song J, Paul SS, Smith S, O’Duffy J, Schmidt M, Canning CG (2017) An interactive videogame for arm and hand exercise in people with Parkinson’s disease: a randomized controlled trial. Parkinson Relat Disord. https://doi.org/10.1016/j.parkreldis.2017.05.011

Article  Google Scholar 

De Vleeschhauwer J, Nackaerts E, D’Cruz N, Vandendoorent B, Micca L, Vandenberghe W, Nieuwboer A (2022) Associations between resting-state functional connectivity changes and prolonged benefits of writing training in Parkinson’s disease. J Neurol 269(9):4696–4707. https://doi.org/10.1007/s00415-022-11098-8

Article  PubMed  Google Scholar 

D’Cruz N, De Vleeschhauwer J, Putzolu M, Nackaerts E, Gilat M, Nieuwboer A (2024) Sensorimotor network segregation predicts long-term learning of writing skills in Parkinson’s Disease. Brain Sci. https://doi.org/10.3390/brainsci14040376

Article  PubMed  PubMed Central  Google Scholar 

Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):1–21. https://doi.org/10.1038/s41572-021-00280-3

Article  Google Scholar 

Lingo VanGilder J, Lopez-Lennon C, Paul SS, Dibble LE, Duff K, Schaefer SY (2021) Relating global cognition with upper-extremity motor skill retention in individuals with mild-to-moderate parkinson’s disease. Front Rehabilit Sci 2(October):1–8. https://doi.org/10.3389/fresc.2021.754118

Article  Google Scholar 

Pauwels L, Vancleef K, Swinnen SP, Beets IAM (2015) Challenge to promote change: both young and older adults benefit from contextual interference. Front Aging Neurosci 7(157):1–12. https://doi.org/10.3389/fnagi.2015.00157

Article  Google Scholar 

Sidaway B, Ala B, Baughman K, Glidden J, Cowie S, Peabody A, Wright DL (2016) Contextual Interference Can Facilitate Motor Learning in Older Adults and in Individuals With Parkinson’s Disease. J Mot Behav. https://doi.org/10.1080/00222895.2016.1152221

Article 

Comments (0)

No login
gif