Formulation Optimization and in Vitro–in Vivo Evaluation of Alpha Lipoic Acid-Loaded Lipid–Polymer Hybrid Nanoparticles Via Design of Experiments

Hahm JR, Kim BJ, Kim KW. Clinical experience with thioctacid (thioctic acid) in the treatment of distal symmetric polyneuropathy in Korean diabetic patients. J Diabetes Complications. 2004. https://doi.org/10.1016/S1056-8727(03)00033-3.

Article  PubMed  Google Scholar 

Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem. 2004. https://doi.org/10.2174/0929867043365387.

Article  PubMed  Google Scholar 

Skibska B, Goraca A, Skibska A, Stanczak A. Effect of alpha-lipoic acid on rat ventricles and atria under LPS-induced oxidative stress. Antioxidants. 2022. https://doi.org/10.3390/antiox11040734.

Article  PubMed  PubMed Central  Google Scholar 

Ye N, Lv Z, Dai H, Huang Z, Shi F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology. 2021. https://doi.org/10.1016/j.theriogenology.2020.10.017.

Article  PubMed  Google Scholar 

Salehi B, Yılmaz YB, Antika G, Boyunegmez Tumer T, Mahomoodally MF, Lobine D, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019. https://doi.org/10.3390/biom9080356.

Article  PubMed  PubMed Central  Google Scholar 

Sheikholeslami S, Khodaverdian S, Dorri-Giv M, Hosseini SM, Souri S, Abedi-Firouzjah R, et al. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: a systematic review. Int Immunopharmacol. 2021. https://doi.org/10.1016/j.intimp.2021.107741.

Article  PubMed  Google Scholar 

Srivastava S, Dhaneshwar S, Kawathekar N. Stress degradation studies and development of validated stability indicating densitometric method for estimation of alpha lipoic acid in bulk and capsule dosage form. Acta Chromatogr. 2023. https://doi.org/10.1556/1326.2022.01034.

Article  Google Scholar 

Oryza. Alpha lipoic acid: Ingredient for weight loss, beauty and anti-oxidative products. In: Oryza Oil&Fat Chemical Co, Ltd. 2006. http://www.oryza.co.jp/html/english/pdf/ALA%20ver.%203.1.pdf. Accessed 10 Aug 2023.

Brufani M, Figliola R. (R)-α-lipoic acid oral liquid formulation: pharmacokinetic parameters and therapeutic efficacy. Acta Biomed. 2014;85(2):108–15.

PubMed  Google Scholar 

Mignini F, Nasuti C, Gioventu G, Napolioni V, Martino PD. Human bioavailability and pharmacokinetic profile of different formulations delivering alpha lipoic acid. Open Access Sci Rep. 2012. https://doi.org/10.4172/scientificreports.418.

Article  Google Scholar 

Dolinina ES, Akimsheva EY, Parfenyuk EV. Development of novel silica-based formulation of α-lipoic acid: evaluation of photo and thermal stability of the encapsulated drug. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12030228.

Article  PubMed  PubMed Central  Google Scholar 

Li YX, Park EY, Lim ST. Stabilization of alpha-lipoic acid by complex formation with octenylsuccinylated high amylose starch. Food Chem. 2018. https://doi.org/10.1016/j.foodchem.2017.09.028.

Article  PubMed  Google Scholar 

Çoban Ö, Demirtaş H, Yıldırım S, Morsali MR. Formulation optimization for ALA-loaded lipid-polymer hybrid nanoparticles via the design of experiments. International Multidisciplinary Symposium on Drug Research and Development - DRD 2023. 2023. https://www.drd2023.org/tema/kres/uploads/DRD23_Abstract_Book.pdf. Accessed 18 Sep 2024.

Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed. 2019. https://doi.org/10.2147/ijn.s198353.

Article  Google Scholar 

Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Express. 2021. https://doi.org/10.1088/2632-959X/abeb4b.

Article  Google Scholar 

Fang RH, Aryal S, Hu CMJ, Zhang L. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010. https://doi.org/10.1021/la103576a.

Article  PubMed  PubMed Central  Google Scholar 

Shafique M, Ur Rehman M, Kamal Z, Alzhrani RM, Alshehri S, Alamri AH, Bakkari MA, Sabei FY, Safhi AY, Mohammed AM, El Hamd MA, Almawash S. Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its in-vitro, in-vivo and computational evaluation. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1025013.

Article  PubMed  PubMed Central  Google Scholar 

Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm. 2018. https://doi.org/10.1016/j.ijpharm.2018.06.063.

Article  PubMed  Google Scholar 

Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016. https://doi.org/10.1016/j.ejps.2015.10.021.

Article  PubMed  Google Scholar 

Alsaidan OA, Elmowafy M, Shalaby K, Alzarea SI, Massoud D, Kassem AM, Ibrahim MF. Hydrocortisone-loaded lipid–polymer hybrid nanoparticles for controlled topical delivery: formulation design optimization and in vitro and in vivo appraisal. ACS Omega. 2023. https://doi.org/10.1021/acsomega.3c00638.

Article  PubMed  PubMed Central  Google Scholar 

Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B Biointerfaces. 2011. https://doi.org/10.1016/j.colsurfb.2011.02.033.

Article  PubMed  Google Scholar 

Parveen S, Gupta P, Kumar S, Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Med Drug Discov. 2023. https://doi.org/10.1016/j.medidd.2023.100165.

Article  Google Scholar 

Andreana I, Chiapasco M, Bincoletto V, Digiovanni S, Manzoli M, Ricci C, Del Favero E, Riganti C, Arpicco S, Stella B. Targeting pentamidine towards CD44-overexpressing cells using hyaluronated lipid-polymer hybrid nanoparticles. Drug Deliv Transl Res. 2024. https://doi.org/10.1007/s13346-024-01617-7.

Article  PubMed  Google Scholar 

Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric lipid hybrid nanoparticles (Plns) as emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13081291.

Article  PubMed  PubMed Central  Google Scholar 

Luiz MT, Viegas JSR, Abriata JP, Viegas F, de Carvalho Vicentini FTM, Bentley MVLB, et al. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm. 2021. https://doi.org/10.1016/j.ejpb.2021.05.011.

Article  Google Scholar 

Sangshetti JN, Deshpande M, Zaheer Z, Shinde DB, Arote R. Quality by design approach: regulatory need. Arab J Chem. 2017. https://doi.org/10.1016/j.arabjc.2014.01.025.

Article  Google Scholar 

Sengel-Turk CT, Hascicek C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J Drug Deliv Sci Technol. 2017. https://doi.org/10.1016/j.jddst.2017.02.012.

Article  Google Scholar 

Sedighi M, Sieber S, Rahimi F, Shahbazi MA, Rezayan AH, Huwyler J, et al. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv Transl. 2019. https://doi.org/10.1007/s13346-018-0587-4.

Article  Google Scholar 

Martínez-Muñoz OI, Ospina-Giraldo LF, Mora-Huertas CE. Nanoprecipitation: applications for entrapping active molecules of interest in pharmaceutics. In: Abu-Thabit N, editor. Nano-and microencapsulation-techniques and applications. IntechOpen; 2020. pp. 101–36.

Çoban Ö, Yıldırım S, Bakır T. Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsions: development, characterization, and evaluation of stability. J Pharm Innov. 2022. https://doi.org/10.1007/s12247-020-09531-4.

Article  Google Scholar 

Çoban Ö, Barut B, Yalçın CÖ, Özel A, Bıyıklıoğlu Z. Development and in vitro evaluation of BSA-coated liposomes containing zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer. J Organomet Chem. 2020. https://doi.org/10.1016/j.jorganchem.2020.121469.

Article  Google Scholar 

Blessy MRDP, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs-a review. J Pharm Anal. 2014. https://doi.org/10.1016/j.jpha.2013.09.003.

Article  PubMed  Google Scholar 

Yasar YK, Sevgi S, Renda G, Çavuşoğlu-Nalbantoglu İ, Duman M, Sezen FS. The in vivo activity of Fraxinus Angustifolia in pain and inflammation- examination of the biological activities of the sub-extracts in mice. J Res Pharm. 2023. https://doi.org/10.29228/jrp.414.

Article  Google Scholar 

Chansiw N, Chusri P, Praman S, Hawiset T, Sukhorum W, Champakam S, et al. Anti-inflammatory potential of a Thai traditional remedy called Prabchompoothaweep in an animal model of acute and sub-acute inflammation. J Ethnopharmacol. 2024. https://doi.org/10.1016/j.jep.2023.117380.

Article  PubMed  Google Scholar 

Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ,

Comments (0)

No login
gif