Development of Chitosan-Based Microencapsulation System for Alkaloids: A Novel Approach for Alzheimer’s Disease Treatment

Jia S, Lu Z, Gao Z, An J, Wu X, Li X, et al. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of Alzheimer’s disease. Int J Biol Macromol. 2016;83:416–25. https://doi.org/10.1016/j.ijbiomac.2015.11.028.

Article  CAS  PubMed  Google Scholar 

Syed Azhar SNA, Ashari SE, Tan JK, Kassim NK, Hassan M, Zainuddin N, et al. Screening and selection of formulation components of nanostructured lipid carriers system for Mitragyna speciosa (Korth). Ind Crops Prod. 2023;198:116668. https://doi.org/10.1016/j.indcrop.2023.116668.

Article  CAS  Google Scholar 

Innok W, Hiranrat A, Chana N, Rungrotmongkol T, Kongsune P. In silico and in vitro anti-AChE activity investigations of constituents from Mitragyna speciosa for Alzheimer’s disease treatment. J Comput Aided Mol Des. 2021;35:325–336. https://doi.org/10.1007/s10822-020-00367-1

Ismail I, Chan KL, Narayanan M. Mitragyna speciosa Korth (Kratom) and its Mitragynine: potential beneficial effects in the management of neurodegenerative diseases. Front Pharmacol. 2021;12:780743. https://doi.org/10.3389/fphar.2021.780743.

Article  Google Scholar 

Sukrong S, Zhu S, Ruangrungsi N, Phadungcharoen T, Palanuvej C, Komatsu K. Molecular analysis of the genus Mitragyna existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: Mitragyna speciosa. Biol Pharm Bull. 2007;30:1284–8. https://doi.org/10.1248/bpb.30.1284.

Article  CAS  PubMed  Google Scholar 

Ramanathan S, Parthasarathy S, Murugaiyah V, Magosso E, Tan SC, Mansor SM. Understanding the physicochemical properties of Mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. Molecules. 2015;20:4915–27. https://doi.org/10.3390/molecules20034915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Overcoming the blood-brain barrier: functionalized Chitosan nanocarriers. Pharmaceutics. 2020;12(11):1013. https://doi.org/10.3390/pharmaceutics12111013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the encapsulation of natural products: the case of Chitosan biopolymer as a matrix. Pharmaceutics. 2020;12(7):669. https://doi.org/10.3390/pharmaceutics12070669.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amani A, Pourgorban M, Mousazadeh N, Fazly Bazzaz BS. Chitosan-based hybrid nanoparticles as a novel approach to improve delivery efficiency and drug release properties of Alzheimer’s disease medications. Int J Biol Macromol. 2021;187:33–43. https://doi.org/10.1016/j.ijbiomac.2021.07.117.

Article  CAS  Google Scholar 

Muthusamy V, Govindhan T, Amirthalingam M, Ashokan AP, Thangavel H, Palanisamy S, et al. Chitosan nanoparticles encapsulated Piper Betle essential oil alleviates Alzheimer’s disease associated pathology in Caenorhabditis elegans. Int J Biol Macromol. 2024;279:135323. https://doi.org/10.1016/j.ijbiomac.2024.135323.

Mohammadbaghban E, Taravati A, Najafzadehvarzi H, Khaleghzadeh-Ahangar H, Tohidi F. Oral administration of encapsulated Catechin in chitosan-alginate nanoparticles improves cognitive function and neurodegeneration in an aluminum chloride-induced rat model of Alzheimer’s disease. Physiol Rep. 2024;12:e16095. https://doi.org/10.14814/phy2.16095.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mudge EM, Brown PN. Determination of Mitragynine in Mitragyna speciosa Raw materials and finished products by liquid chromatography with UV detection: single-laboratory validation. J AOAC Int. 2017;100:18–24. https://doi.org/10.5740/jaoacint.16-0220.

Article  CAS  PubMed  Google Scholar 

Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J Chromatogr A. 2001;915:217–23. https://doi.org/10.1016/S0021-9673(01)00624-0.

Article  CAS  PubMed  Google Scholar 

Rahman AO, Khatib A. Formulation and characterization of 50% ethanol extract of Areca nut (Areca catechu) nanoparticles using the ionic gelation method. Med Sains. 2023;8:981–6.

Google Scholar 

Ding Z, Chen W, Jiang F, Mo M, Bi Y, Kong F. Synthesis, characterization and in vitro digestion of folate conjugated chitosan-loaded proanthocyanidins nanoparticles. Food Res Int. 2023;163:112141. https://doi.org/10.1016/j.foodres.2023.112141.

Article  CAS  PubMed  Google Scholar 

Tamfu AN, Kucukaydin S, Yeskaliyeva B, Ozturk M, Dinica RM. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules. 2021;26:5582. https://doi.org/10.3390/molecules26185582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Firmansyah A, Sundalian M, Taufiq M. Kratom (Mitragyna speciosa Korth) for a new medicinal: A review of Pharmacological and compound analysis. Biointerface Res Appl Chem. 2021;11:9704–18. https://doi.org/10.33263/BRIAC112.97049718.

Article  Google Scholar 

Stolt AC, Schröder H, Neurath H, Grecksch G, Höllt V, Meyer MR, et al. Behavioral and neurochemical characterization of Kratom (Mitragyna speciosa) extract. Psychopharmacology. 2014;231:13–25. https://doi.org/10.1007/s00213-013-3201-y.

Article  CAS  PubMed  Google Scholar 

Sabetghadam A, Navaratnam V, Mansor SM. Dose–response relationship, acute toxicity, and therapeutic index between the alkaloid extract of Mitragyna speciosa and its main active compound Mitragynine in mice. Drug Dev Res. 2013;74:23–30. https://doi.org/10.1002/ddr.21052.

Article  CAS  Google Scholar 

Nukitram J, Saengmolee W, Chaisaen R, Autthasan P, Sengnon N, Wungsintaweekul J, et al. ANet: autoencoder-based local field potential feature extractor for evaluating an antidepressant effect in mice after administering Kratom leaf extracts. IEEE Trans Biomed Circuits Syst. 2023;17:67–76. https://doi.org/10.1109/TBCAS.2022.3222990.

Article  Google Scholar 

Hossain R, Sultana A, Nuinoon M, Noonong K, Tangpong J, Hossain KH, et al. A critical review of the neuropharmacological effects of Kratom: an insight from the functional array of identified natural compounds. Molecules. 2023;28:34. https://doi.org/10.3390/molecules28010034.

Article  CAS  Google Scholar 

Charlton NC, Mastyugin M, Török B, Török M. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules. 2023;28:1057. https://doi.org/10.3390/molecules28031057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masriani M, Melania P, Muharini R, Alimuddin A, Sartika R. Total phenolic and flavonoids content, and antioxidant activity of Kratom (Mitragyna speciosa Korth.) leaf ethanol extract. J Nat. 2024;24:16–21. https://doi.org/10.24843/JN.2024.v24.i01.p03.

Article  Google Scholar 

Gutiérrez-Ruíz SC, Cortes H, González-Torres M, Almarhoon ZM, Gürer ES, Sharifi-Rad J, et al. Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan-sodium tripolyphosphate nanoparticles for biomedical purposes. J Biol Eng. 2024;18:12. https://doi.org/10.1186/s13036-023-00355-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V. Determination of Mitragynine in plasma with solid-phase extraction and rapid HPLC-UV analysis, and its application to a Pharmacokinetic study in rat. Anal Bioanal Chem. 2010;397:2023–30. https://doi.org/10.1007/s00216-010-3771-z.

Article  CAS  PubMed  Google Scholar 

Jummes B, Sganzerla WG, da Rosa CG, Noronha CM, Nunes MR, Bertoldi FC, et al. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal Agric Biotechnol. 2020;23:101499. https://doi.org/10.1016/j.bcab.2020.101499.

Article  Google Scholar 

Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10:12871–934. https://doi.org/10.1039/C8NR02278J.

Article  CAS  PubMed  Google Scholar 

Zeng R, Tu M, Liu HW, Zhao JH, Zha ZG, Zhou CR. Preparation, structure and drug release behaviour of chitosan-based nanofibres. IET Nanobiotechnol. 2009;3:8–13. https://doi.org/10.1049/iet-nbt:20080018.

Article  CAS  PubMed  Google Scholar 

Azhary S, Purnama D, Florena F, Vanitha M, Panatarani C, Joni I. Synthesis and characterization of Chitosan: SiO2 nanocomposite by ultrasonic spray drying. IOP Conf Ser Mater Sci Eng. 2019;2019:012037. https://doi.org/10.1088/1757-899X/550/1/012037.

Article  Google Scholar 

Basiliere S, Kerrigan S. Temperature and pH-dependent stability of Mitragyna alkaloids. J Anal Toxicol. 2020;44:314–24. https://doi.org/10.1093/jat/bkz108.

Article  CAS 

Comments (0)

No login
gif