Investigation of the Synergistic Antibacterial Properties of a Gel Formulated from Green-Synthesized Chitosan-Coated Copper Oxide Nanocomposite

Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):9337.

Google Scholar 

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011;13(10):2638 50.

Google Scholar 

Das SK, Khan MM, Guha AK, Das AR, Mandal AB. Silver-nano biohybride material: synthesis, characterization and application in water purification. Biores Technol. 2012;1(124):495–9.

Google Scholar 

Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14(5):1322–34.

CAS  Google Scholar 

Das SK, Khan MM, Guha AK, Naskar N. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem. 2013;15(9):2548–57.

CAS  Google Scholar 

Swain S, Barik SK, Behera T, et al. Green synthesis of gold nanoparticles using root and leaf extracts of vetiveria zizanioides and cannabis sativa and its antifungal activities. BioNanoSci. 2016;6:205–13. https://doi.org/10.1007/s12668-016-0208-y.

Article  Google Scholar 

Rao CN. Transition metal oxides. Annu Rev Phys Chem. 1989;40(1):291–326.

CAS  Google Scholar 

Wang ZL. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem. 2004;1(55):159–96.

Google Scholar 

Premkumar T, Geckeler KE. Nanosized CuO particles via a supramolecular strategy. Small. 2006;2(5):616–20.

CAS  PubMed  Google Scholar 

Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33(6):587–90.

CAS  PubMed  Google Scholar 

Hsieh CT, Chen JM, Lin HH, Shih HC. Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl Phys Lett. 2003;82(19):3316–8.

CAS  Google Scholar 

Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, Liu H, Fang B. Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J Phys Chem C. 2008;112(43):16845–9.

CAS  Google Scholar 

Carnes CL, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A: Chem. 2003;194(1–2):227–36.

CAS  Google Scholar 

Zhu J, Li D, Chen H, Yang X, Lu L, Wang X. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett. 2004;58(26):3324–7.

CAS  Google Scholar 

Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ. Preparation and characterization of CuO nanocrystals. J Solid State Chem. 1999;147(2):516–9.

CAS  Google Scholar 

Hong ZS, Cao Y, Deng JF. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett. 2002;52(1–2):34–8.

CAS  Google Scholar 

Ahmad T, Chopra R, Ramanujachary KV, Lofland SE, Ganguli AK. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Solid State Sci. 2005;7(7):891–5.

CAS  Google Scholar 

Wang H, Xu JZ, Zhu JJ, Chen HY. Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth. 2002;244(1):88–94.

CAS  Google Scholar 

Sun L, Zhang Z, Wang Z, Wu Z, Dang H. Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater Res Bull. 2005;40(6):1024–7.

CAS  Google Scholar 

Saravanan P, Alam S, Mathur GN. A liquid− liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films. 2005;491(1–2):168–72.

CAS  Google Scholar 

Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, Cao F. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018. https://doi.org/10.1016/j.actbio.2018.09.013.

Article  PubMed  PubMed Central  Google Scholar 

Raghavendra GM, Jung J, Kim D, Seo J. Microwave assisted antibacterial chitosan– silver nanocomposite films. Int J Biol Macromole. 2016;84:281–8. https://doi.org/10.1016/j.ijbiomac.2015.12.026.

Article  CAS  Google Scholar 

Yu Z, Li B, Chu J, Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohyd Polym. 2018;184:214–20. https://doi.org/10.1016/j.carbpol.2017.12.043.

Article  CAS  Google Scholar 

Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J of Nano. 2013;8:889. https://doi.org/10.2147/IJN.S40599.

Article  CAS  Google Scholar 

Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surf B. 2013;1(101):430–3. https://doi.org/10.1016/j.colsurfb.2012.07.002.

Article  CAS  Google Scholar 

Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;1(89):1067–77. https://doi.org/10.1016/j.biopha.2017.02.101.

Article  CAS  Google Scholar 

Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y. Observation of charge stripes in cupric oxide. Phys Rev Lett. 2000;85(24):5170. https://doi.org/10.1103/physrevlett.85.5170.

Article  CAS  PubMed  Google Scholar 

Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Gübitz G, Gedanken A. CuO– cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf Coat Technol. 2009;204(1–2):54–7. https://doi.org/10.1016/j.surfcoat.2009.06.028.

Article  CAS  Google Scholar 

Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5(16):12293–9. https://doi.org/10.1039/c4ra12163e.

Article  CAS  Google Scholar 

Afzali M, Mostafavi A, Shamspur T. Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab J Chem. 2020;13(1):3255–65. https://doi.org/10.1016/j.arabjc.2018.11.001.

Article  CAS  Google Scholar 

Elemike EE, Onwudiwe DC, Nundkumar N, Singh M. CuO and Au-CuO nanoparticles mediated by Stigmaphyllon ovatum leaf extract and their anticancer potential. Inorg Chem Commun. 2019;1(104):93–7. https://doi.org/10.1016/j.inoche.2019.03.039.

Article  CAS  Google Scholar 

Leung AY, Foster S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. John Wiley & Sons, Inc.; 1996.

Vassou SL, Nithaniyal S, Raju B, Parani M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. BMC Complement Altern Med. 2016;16(1):9–15.

Google Scholar 

Govindarajan VS, Stahl WH. Turmeric—chemistry, technology, and quality. Crit Rev Food Sci Nutr. 1980;12(3):199–301.

CAS  PubMed  Google Scholar 

Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol Rep (Amst). 2015;18(6):51–5. https://doi.org/10.1016/j.btre.2015.02.001.

Article  Google Scholar 

Verma A, Sukhdev S, Kaur R. Jain UK, Landran, Mohali, Punjab, India. Topical gels as drug delivery systems a review. Int J Pharm Sci Rev Res. 2013;23(60):374–82.

Google Scholar 

Paul S, Deepa MK, Peter S. Development of green synthesized chitosan-coated copper oxide nanocomposite gel for topical delivery. J Pharm Innov. 2022;18:1010. https://doi.org/10.1007/s12247-022-09701-6.

Article  Google Scholar 

Sathiyavimal S, Vasantharaj S, Kaliannan T, Pugazhendhi A. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohyd Polym. 2020;1(241): 116243. https://doi.org/10.1016/j.carbpol.2020.116243.

Article  CAS  Google Scholar 

Noviello S, Hawser S, Sader H, Huang DB. In vitro activity of dihydrofolate reductase inhibitors and other antibiotics against Gram-positive pathogens collected globally between 2004 and 2016. J Global Antimicrobial Resistance. 2019;1(16):236–8.

Google Scholar 

Usman JG, Sodipo OA, Sandabe UK. In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. Naudin fruit extracts against Salmonella gallinarum. Int J Phytomed. 2014;6(2):268.

Google Scholar 

Atef NM, Shanab SM, Negm SI, Abbas YA. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull Natl Res Centre. 2019;43(1):1–1.

Google Scholar 

Salavati-Niasari M, Davar F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett. 2009;63(3–4):441–3. https://doi.org/10.1016/j.matlet.2008.11.023.

Article  CAS  Google Scholar 

Narasaiah P, Mandal BK, Sarada NC. Biosynthesis of copper oxide nanoparticles from Dr

Comments (0)

No login
gif