Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):9337.
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011;13(10):2638 50.
Das SK, Khan MM, Guha AK, Das AR, Mandal AB. Silver-nano biohybride material: synthesis, characterization and application in water purification. Biores Technol. 2012;1(124):495–9.
Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14(5):1322–34.
Das SK, Khan MM, Guha AK, Naskar N. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem. 2013;15(9):2548–57.
Swain S, Barik SK, Behera T, et al. Green synthesis of gold nanoparticles using root and leaf extracts of vetiveria zizanioides and cannabis sativa and its antifungal activities. BioNanoSci. 2016;6:205–13. https://doi.org/10.1007/s12668-016-0208-y.
Rao CN. Transition metal oxides. Annu Rev Phys Chem. 1989;40(1):291–326.
Wang ZL. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem. 2004;1(55):159–96.
Premkumar T, Geckeler KE. Nanosized CuO particles via a supramolecular strategy. Small. 2006;2(5):616–20.
Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33(6):587–90.
Hsieh CT, Chen JM, Lin HH, Shih HC. Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl Phys Lett. 2003;82(19):3316–8.
Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, Liu H, Fang B. Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J Phys Chem C. 2008;112(43):16845–9.
Carnes CL, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A: Chem. 2003;194(1–2):227–36.
Zhu J, Li D, Chen H, Yang X, Lu L, Wang X. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett. 2004;58(26):3324–7.
Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ. Preparation and characterization of CuO nanocrystals. J Solid State Chem. 1999;147(2):516–9.
Hong ZS, Cao Y, Deng JF. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett. 2002;52(1–2):34–8.
Ahmad T, Chopra R, Ramanujachary KV, Lofland SE, Ganguli AK. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Solid State Sci. 2005;7(7):891–5.
Wang H, Xu JZ, Zhu JJ, Chen HY. Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth. 2002;244(1):88–94.
Sun L, Zhang Z, Wang Z, Wu Z, Dang H. Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater Res Bull. 2005;40(6):1024–7.
Saravanan P, Alam S, Mathur GN. A liquid− liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films. 2005;491(1–2):168–72.
Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, Cao F. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018. https://doi.org/10.1016/j.actbio.2018.09.013.
Article PubMed PubMed Central Google Scholar
Raghavendra GM, Jung J, Kim D, Seo J. Microwave assisted antibacterial chitosan– silver nanocomposite films. Int J Biol Macromole. 2016;84:281–8. https://doi.org/10.1016/j.ijbiomac.2015.12.026.
Yu Z, Li B, Chu J, Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohyd Polym. 2018;184:214–20. https://doi.org/10.1016/j.carbpol.2017.12.043.
Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J of Nano. 2013;8:889. https://doi.org/10.2147/IJN.S40599.
Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surf B. 2013;1(101):430–3. https://doi.org/10.1016/j.colsurfb.2012.07.002.
Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;1(89):1067–77. https://doi.org/10.1016/j.biopha.2017.02.101.
Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y. Observation of charge stripes in cupric oxide. Phys Rev Lett. 2000;85(24):5170. https://doi.org/10.1103/physrevlett.85.5170.
Article CAS PubMed Google Scholar
Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Gübitz G, Gedanken A. CuO– cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf Coat Technol. 2009;204(1–2):54–7. https://doi.org/10.1016/j.surfcoat.2009.06.028.
Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5(16):12293–9. https://doi.org/10.1039/c4ra12163e.
Afzali M, Mostafavi A, Shamspur T. Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab J Chem. 2020;13(1):3255–65. https://doi.org/10.1016/j.arabjc.2018.11.001.
Elemike EE, Onwudiwe DC, Nundkumar N, Singh M. CuO and Au-CuO nanoparticles mediated by Stigmaphyllon ovatum leaf extract and their anticancer potential. Inorg Chem Commun. 2019;1(104):93–7. https://doi.org/10.1016/j.inoche.2019.03.039.
Leung AY, Foster S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. John Wiley & Sons, Inc.; 1996.
Vassou SL, Nithaniyal S, Raju B, Parani M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. BMC Complement Altern Med. 2016;16(1):9–15.
Govindarajan VS, Stahl WH. Turmeric—chemistry, technology, and quality. Crit Rev Food Sci Nutr. 1980;12(3):199–301.
Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol Rep (Amst). 2015;18(6):51–5. https://doi.org/10.1016/j.btre.2015.02.001.
Verma A, Sukhdev S, Kaur R. Jain UK, Landran, Mohali, Punjab, India. Topical gels as drug delivery systems a review. Int J Pharm Sci Rev Res. 2013;23(60):374–82.
Paul S, Deepa MK, Peter S. Development of green synthesized chitosan-coated copper oxide nanocomposite gel for topical delivery. J Pharm Innov. 2022;18:1010. https://doi.org/10.1007/s12247-022-09701-6.
Sathiyavimal S, Vasantharaj S, Kaliannan T, Pugazhendhi A. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohyd Polym. 2020;1(241): 116243. https://doi.org/10.1016/j.carbpol.2020.116243.
Noviello S, Hawser S, Sader H, Huang DB. In vitro activity of dihydrofolate reductase inhibitors and other antibiotics against Gram-positive pathogens collected globally between 2004 and 2016. J Global Antimicrobial Resistance. 2019;1(16):236–8.
Usman JG, Sodipo OA, Sandabe UK. In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. Naudin fruit extracts against Salmonella gallinarum. Int J Phytomed. 2014;6(2):268.
Atef NM, Shanab SM, Negm SI, Abbas YA. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull Natl Res Centre. 2019;43(1):1–1.
Salavati-Niasari M, Davar F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett. 2009;63(3–4):441–3. https://doi.org/10.1016/j.matlet.2008.11.023.
Narasaiah P, Mandal BK, Sarada NC. Biosynthesis of copper oxide nanoparticles from Dr
Comments (0)