Optimizing intraoperative AI: evaluation of YOLOv8 for real-time recognition of robotic and laparoscopic instruments

Fairag M, Almahdi RH, Siddiqi AA, Alharthi FK, Alqurashi BS, Alzahrani NG, Alsulami A, Alshehri R (2024) Robotic revolution in surgery: diverse applications across specialties and future prospects review article. Cureus 16(1):e52148. https://doi.org/10.7759/cureus.52148

Article  PubMed  PubMed Central  Google Scholar 

Sejor E, Berthet-Rayne P, Frey S (2022) Calling on the next generation of surgeons. Surg Innov 30:15533506221124500. https://doi.org/10.1177/15533506221124501

Article  Google Scholar 

Rodler S, Ganjavi C, De Backer P, Magoulianitis V, Ramacciotti LS, De Castro Abreu AL, Gill IS, Cacciamani GE (2024) Generative artificial intelligence in surgery. Surgery 175(6):1496–1502. https://doi.org/10.1016/j.surg.2024.02.019

Article  PubMed  Google Scholar 

Gumbs AA, Grasso V, Bourdel N, Croner R, Spolverato G, Frigerio I, Illanes A, Abu Hilal M, Park A, Elyan E (2022) The advances in computer vision that are enabling more autonomous actions in surgery: a systematic review of the literature. Sensors (Basel) 22(13):4918. https://doi.org/10.3390/s22134918

Article  PubMed  Google Scholar 

Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C, Pessaux P, Mutter D, Marescaux J, Costamagna G, Dallemagne B, Padoy N (2022) Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 275(5):955–961. https://doi.org/10.1097/SLA.0000000000004351

Article  PubMed  Google Scholar 

Choksi S, Szot S, Zang C, Yarali K, Cao Y, Ahmad F, Xiang Z, Bitner DP, Kostic Z, Filicori F (2023) Bringing artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg Endosc 37(11):8778–8784. https://doi.org/10.1007/s00464-023-10322-4

Article  PubMed  Google Scholar 

den Boer RB, Jaspers TJM, de Jongh C, Pluim JPW, van der Sommen F, Boers T, van Hillegersberg R, Van Eijnatten MAJM, Ruurda JP (2023) Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy. Surg Endosc 37(7):5164–5175. https://doi.org/10.1007/s00464-023-09990-z

Article  Google Scholar 

Hofman J, De Backer P, Manghi I, Simoens J, De Groote R, Van Den Bossche H, D’Hondt M, Oosterlinck T, Lippens J, Van Praet C, Ferraguti F, Debbaut C, Li Z, Kutter O, Mottrie A, Decaestecker K (2023) First-in-human real-time AI-assisted instrument deocclusion during augmented reality robotic surgery. Healthc Technol Lett 11(2–3):33–39. https://doi.org/10.1049/htl2.12056

Article  PubMed  PubMed Central  Google Scholar 

Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P (2020) Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng 13:212–232. https://doi.org/10.1109/RBME.2019.2939091

Article  PubMed  Google Scholar 

Zia A, Bhattacharyya K, Liu X, Berniker M, Wang Z, Nespolo R, Kondo S, Kasai S, Hirasawa K, Liu B, Austin D 2023. Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge. arXiv preprint arXiv:2305.07152.

Yu L, Wang P, Yu X, Yan Y, Xia Y (2020) A holistically-nested U-net: surgical instrument segmentation based on convolutional neural network. J Digit Imaging 33(2):341–347. https://doi.org/10.1007/s10278-019-00277-1

Article  PubMed  Google Scholar 

Lo BPL, Darzi A, Yang G-Z (2003) Episode classification for the analysis of tissue/instrument interaction with multiple visual cues. Med Image Comput Comput-Assist Interv - MICCAI 2003(2878):230–237

Google Scholar 

Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P (2015) Detecting surgical tools by modelling local appearance and global shape. TMI 34:2603–2617

Google Scholar 

Allan M, Shvets A, Kurmann T, Zhang Z, Duggal R, Su YH, Rieke N, Laina I, Kalavakonda N, Bodenstedt S, Herrera L (2019). 2017 robotic instrument segmentation challenge. arXiv preprint arXiv:1902.06426.

Sestini L, Rosa B, De Momi E, Ferrigno G, Padoy N (2021) A kinematic bottleneck approach for pose regression of flexible surgical instruments directly from images. IEEE Robot Autom Lett 6(2):2938–2945

Google Scholar 

Ni ZL, Zhou XH, Wang GA, Yue WQ, Li Z, Bian GB, Hou ZG (2022) SurgiNet: pyramid attention aggregation and class-wise self-distillation for surgical instrument segmentation. Med Image Anal 76:102310. https://doi.org/10.1016/j.media.2021.102310

Article  PubMed  Google Scholar 

Liu J, Guo X, Yuan Y (2022) Graph-based surgical instrument adaptive segmentation via domain-common knowledge. IEEE Trans Med Imaging 41(3):715–726. https://doi.org/10.1109/TMI.2021.3121138

Article  PubMed  Google Scholar 

Liu J, Guo X, Yuan Y (2021) Prototypical interaction graph for unsupervised domain adaptation in surgical instrument segmentation. In: de Bruijne M et al (eds) Medical image computing and computer assisted intervention – MICCAI 2021. MICCAI 2021. lecture notes in computer science, vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_26

Chapter  Google Scholar 

Wei M, Budd C, Garcia-Peraza-Herrera LC, Dorent R, Shi M, Vercauteren T (2023). SegMatch: A semi-supervised learning method for surgical instrument segmentation. arXiv preprint arXiv:2308.05232.

Ayobi N, Pérez-Rondón A, Rodríguez S, Arbeláez P (2023). Matis: Masked-attention transformers for surgical instrument segmentation. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

Wang A, Islam M, Xu M, Zhang Y, Ren H (2023). Sam meets robotic surgery: an empirical study on generalization, robustness and adaptation. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer Nature Switzerland (pp. 234-244).

Valderrama N et al (2022) Towards Holistic Surgical Scene Understanding. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S (eds) Medical image computing and computer assisted intervention– MICCAI 2022. MICCAI 2022. lecture notes in computer science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_42

Chapter  Google Scholar 

Garcia-Peraza-Herrera LC, Fidon L, D’Ettorre C, Stoyanov D, Vercauteren T, Ourselin S (2021) Image compositing for segmentation of surgical tools without manual annotations. IEEE Trans Med Imaging 40(5):1450–1460

PubMed  Google Scholar 

Ultralytics, YOLOv8 Mosaic, https://yolov8.org/yolov8-mosaic

Glenn Jocher, Ayush Chaurasia and Jing Qiu. Ultralytics YOLOv8, version 8.0.0. 2023. https://github.com/ultralytics/ultralytics; Accessed: 2024-June-18.

Schulze A, Tran D, Daum MTJ et al (2023) Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA). Surg Endosc 37(8):6153–6162. https://doi.org/10.1007/s00464-023-10078-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Backer P, Van Praet C, Simoens J, Peraire Lores M, Creemers H, Mestdagh K, Allaeys C, Vermijs S, Piazza P, Mottaran A, Bravi CA, Paciotti M, Sarchi L, Farinha R, Puliatti S, Cisternino F, Ferraguti F, Debbaut C, De Naeyer G, Decaestecker K, Mottrie A (2023) Improving augmented reality through deep learning: real-time instrument delineation in robotic renal surgery. Eur Urol 84(1):86–91. https://doi.org/10.1016/j.eururo.2023.02.024

Article  PubMed  Google Scholar 

Le HB, Kim T, Ha M, Tran A, Nguyen DT, Dinh XM (2023) Robust Surgical Tool Detection in Laparoscopic Surgery using YOLOv8 Model. Proc ICSSE. https://doi.org/10.1109/ICSSE58758.2023.10227217

Article  Google Scholar 

Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N (2017) EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 36(1):86–97. https://doi.org/10.1109/TMI.2016.2593957

Article  PubMed  Google Scholar 

Murali A, Alapatt D, Mascagni P, et al (2024). The Endoscapes dataset for surgical scene segmentation, object detection, and critical view of safety assessment: official splits and benchmark. Accessed August 29, 2024. http://arxiv.org/abs/2312.12429

González C, Bravo-Sánchez L, Arbelaez P (2020) Isinet: an instance-based approach for surgical instrument segmentation. International conference on medical image computing and computer-assisted intervention. Springer International Publishing, Cham, pp 595–605

Google Scholar 

Sheng Y, Bano S, Clarkson MJ et al (2024) Surgical-DeSAM: decoupling SAM for instrument segmentation in robotic surgery. Int J CARS. https://doi.org/10.1007/s11548-024-03163-6

Article  Google Scholar 

Zhang Y, Sun P, Jiang Y, et al (2022). Bytetrack: multi-object tracking by associating every detection box. Accessed August 29, 2024. http://arxiv.org/abs/2110.06864

Myo N, Boonkong A, Khampitak K, Hormdee A (2024) Real-time surgical instrument segmentation analysis using YOLOv8 with bytetrack for laparoscopic surgery. IEEE. https://doi.org/10.1109/ACCESS.2024.3412780

Article  Google Scholar 

Makary J, van Diepen DC, Arianayagam R, McClintock G, Fallot J, Leslie S, Thanigasalam R (2022) The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future. J Robot Surg 16(4):765–774. https://doi.org/10.1007/s11701-021-01305-5

Article  PubMed  Google Scholar 

Schmidt A, Mohareri O, DiMaio S, Yip MC, Salcudean SE (2024) Tracking and mapping in medical computer vision: a review. Med Image Anal 94:103131. https://doi.org/10.1016/j.media.2024.103131

Article  PubMed  Google Scholar 

Comments (0)

No login
gif