Fairag M, Almahdi RH, Siddiqi AA, Alharthi FK, Alqurashi BS, Alzahrani NG, Alsulami A, Alshehri R (2024) Robotic revolution in surgery: diverse applications across specialties and future prospects review article. Cureus 16(1):e52148. https://doi.org/10.7759/cureus.52148
Article PubMed PubMed Central Google Scholar
Sejor E, Berthet-Rayne P, Frey S (2022) Calling on the next generation of surgeons. Surg Innov 30:15533506221124500. https://doi.org/10.1177/15533506221124501
Rodler S, Ganjavi C, De Backer P, Magoulianitis V, Ramacciotti LS, De Castro Abreu AL, Gill IS, Cacciamani GE (2024) Generative artificial intelligence in surgery. Surgery 175(6):1496–1502. https://doi.org/10.1016/j.surg.2024.02.019
Gumbs AA, Grasso V, Bourdel N, Croner R, Spolverato G, Frigerio I, Illanes A, Abu Hilal M, Park A, Elyan E (2022) The advances in computer vision that are enabling more autonomous actions in surgery: a systematic review of the literature. Sensors (Basel) 22(13):4918. https://doi.org/10.3390/s22134918
Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C, Pessaux P, Mutter D, Marescaux J, Costamagna G, Dallemagne B, Padoy N (2022) Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 275(5):955–961. https://doi.org/10.1097/SLA.0000000000004351
Choksi S, Szot S, Zang C, Yarali K, Cao Y, Ahmad F, Xiang Z, Bitner DP, Kostic Z, Filicori F (2023) Bringing artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg Endosc 37(11):8778–8784. https://doi.org/10.1007/s00464-023-10322-4
den Boer RB, Jaspers TJM, de Jongh C, Pluim JPW, van der Sommen F, Boers T, van Hillegersberg R, Van Eijnatten MAJM, Ruurda JP (2023) Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy. Surg Endosc 37(7):5164–5175. https://doi.org/10.1007/s00464-023-09990-z
Hofman J, De Backer P, Manghi I, Simoens J, De Groote R, Van Den Bossche H, D’Hondt M, Oosterlinck T, Lippens J, Van Praet C, Ferraguti F, Debbaut C, Li Z, Kutter O, Mottrie A, Decaestecker K (2023) First-in-human real-time AI-assisted instrument deocclusion during augmented reality robotic surgery. Healthc Technol Lett 11(2–3):33–39. https://doi.org/10.1049/htl2.12056
Article PubMed PubMed Central Google Scholar
Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P (2020) Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng 13:212–232. https://doi.org/10.1109/RBME.2019.2939091
Zia A, Bhattacharyya K, Liu X, Berniker M, Wang Z, Nespolo R, Kondo S, Kasai S, Hirasawa K, Liu B, Austin D 2023. Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge. arXiv preprint arXiv:2305.07152.
Yu L, Wang P, Yu X, Yan Y, Xia Y (2020) A holistically-nested U-net: surgical instrument segmentation based on convolutional neural network. J Digit Imaging 33(2):341–347. https://doi.org/10.1007/s10278-019-00277-1
Lo BPL, Darzi A, Yang G-Z (2003) Episode classification for the analysis of tissue/instrument interaction with multiple visual cues. Med Image Comput Comput-Assist Interv - MICCAI 2003(2878):230–237
Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P (2015) Detecting surgical tools by modelling local appearance and global shape. TMI 34:2603–2617
Allan M, Shvets A, Kurmann T, Zhang Z, Duggal R, Su YH, Rieke N, Laina I, Kalavakonda N, Bodenstedt S, Herrera L (2019). 2017 robotic instrument segmentation challenge. arXiv preprint arXiv:1902.06426.
Sestini L, Rosa B, De Momi E, Ferrigno G, Padoy N (2021) A kinematic bottleneck approach for pose regression of flexible surgical instruments directly from images. IEEE Robot Autom Lett 6(2):2938–2945
Ni ZL, Zhou XH, Wang GA, Yue WQ, Li Z, Bian GB, Hou ZG (2022) SurgiNet: pyramid attention aggregation and class-wise self-distillation for surgical instrument segmentation. Med Image Anal 76:102310. https://doi.org/10.1016/j.media.2021.102310
Liu J, Guo X, Yuan Y (2022) Graph-based surgical instrument adaptive segmentation via domain-common knowledge. IEEE Trans Med Imaging 41(3):715–726. https://doi.org/10.1109/TMI.2021.3121138
Liu J, Guo X, Yuan Y (2021) Prototypical interaction graph for unsupervised domain adaptation in surgical instrument segmentation. In: de Bruijne M et al (eds) Medical image computing and computer assisted intervention – MICCAI 2021. MICCAI 2021. lecture notes in computer science, vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_26
Wei M, Budd C, Garcia-Peraza-Herrera LC, Dorent R, Shi M, Vercauteren T (2023). SegMatch: A semi-supervised learning method for surgical instrument segmentation. arXiv preprint arXiv:2308.05232.
Ayobi N, Pérez-Rondón A, Rodríguez S, Arbeláez P (2023). Matis: Masked-attention transformers for surgical instrument segmentation. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.
Wang A, Islam M, Xu M, Zhang Y, Ren H (2023). Sam meets robotic surgery: an empirical study on generalization, robustness and adaptation. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer Nature Switzerland (pp. 234-244).
Valderrama N et al (2022) Towards Holistic Surgical Scene Understanding. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S (eds) Medical image computing and computer assisted intervention– MICCAI 2022. MICCAI 2022. lecture notes in computer science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_42
Garcia-Peraza-Herrera LC, Fidon L, D’Ettorre C, Stoyanov D, Vercauteren T, Ourselin S (2021) Image compositing for segmentation of surgical tools without manual annotations. IEEE Trans Med Imaging 40(5):1450–1460
Ultralytics, YOLOv8 Mosaic, https://yolov8.org/yolov8-mosaic
Glenn Jocher, Ayush Chaurasia and Jing Qiu. Ultralytics YOLOv8, version 8.0.0. 2023. https://github.com/ultralytics/ultralytics; Accessed: 2024-June-18.
Schulze A, Tran D, Daum MTJ et al (2023) Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA). Surg Endosc 37(8):6153–6162. https://doi.org/10.1007/s00464-023-10078-x
Article CAS PubMed PubMed Central Google Scholar
De Backer P, Van Praet C, Simoens J, Peraire Lores M, Creemers H, Mestdagh K, Allaeys C, Vermijs S, Piazza P, Mottaran A, Bravi CA, Paciotti M, Sarchi L, Farinha R, Puliatti S, Cisternino F, Ferraguti F, Debbaut C, De Naeyer G, Decaestecker K, Mottrie A (2023) Improving augmented reality through deep learning: real-time instrument delineation in robotic renal surgery. Eur Urol 84(1):86–91. https://doi.org/10.1016/j.eururo.2023.02.024
Le HB, Kim T, Ha M, Tran A, Nguyen DT, Dinh XM (2023) Robust Surgical Tool Detection in Laparoscopic Surgery using YOLOv8 Model. Proc ICSSE. https://doi.org/10.1109/ICSSE58758.2023.10227217
Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N (2017) EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 36(1):86–97. https://doi.org/10.1109/TMI.2016.2593957
Murali A, Alapatt D, Mascagni P, et al (2024). The Endoscapes dataset for surgical scene segmentation, object detection, and critical view of safety assessment: official splits and benchmark. Accessed August 29, 2024. http://arxiv.org/abs/2312.12429
González C, Bravo-Sánchez L, Arbelaez P (2020) Isinet: an instance-based approach for surgical instrument segmentation. International conference on medical image computing and computer-assisted intervention. Springer International Publishing, Cham, pp 595–605
Sheng Y, Bano S, Clarkson MJ et al (2024) Surgical-DeSAM: decoupling SAM for instrument segmentation in robotic surgery. Int J CARS. https://doi.org/10.1007/s11548-024-03163-6
Zhang Y, Sun P, Jiang Y, et al (2022). Bytetrack: multi-object tracking by associating every detection box. Accessed August 29, 2024. http://arxiv.org/abs/2110.06864
Myo N, Boonkong A, Khampitak K, Hormdee A (2024) Real-time surgical instrument segmentation analysis using YOLOv8 with bytetrack for laparoscopic surgery. IEEE. https://doi.org/10.1109/ACCESS.2024.3412780
Makary J, van Diepen DC, Arianayagam R, McClintock G, Fallot J, Leslie S, Thanigasalam R (2022) The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future. J Robot Surg 16(4):765–774. https://doi.org/10.1007/s11701-021-01305-5
Schmidt A, Mohareri O, DiMaio S, Yip MC, Salcudean SE (2024) Tracking and mapping in medical computer vision: a review. Med Image Anal 94:103131. https://doi.org/10.1016/j.media.2024.103131
Comments (0)