Lactic acidosis: implications for human exercise performance

Achten E, Van Cauteren M, Willem R, Luypaert R, Malaisse WJ, Van Bosch G, Delanghe G, De Meirleir K, Osteaux M (1990) 31P-NMR spectroscopy and the metabolic properties of different muscle fibers. J Appl Physiol 68:644–649

Article  CAS  PubMed  Google Scholar 

Adams GR, Fisher MJ, Meyer RA (1991) Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle. Am J Physiol 260:C805–C812

Article  CAS  PubMed  Google Scholar 

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

Article  CAS  PubMed  Google Scholar 

Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2011) Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol 589(21):5299–5309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews MAW, Godt RE, Nosek TM (1996) Influence of physiological L(+)-lactate concentrations on contractility of skinned striated muscle fibers of rabbit. J Appl Physiol 80(6):2060–2065

Article  CAS  PubMed  Google Scholar 

Arieta LR, Smith ZH, Paluch AE, Kent JA (2024) Effects of older age on contraction-induced intramyocellular acidosis and inorganic phosphate accumulation in vivo: a systematic review and meta-analysis. PLoS ONE 19(9):e0308336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azevedo Jr JL, Tietz E, Two-Feathers T, Pauli J, Chapman K (2007) Lactate, fructose and glucose oxidation profiles in sports drinks and the effect on exercise performance. PLoS ONE 2(9):e927

Baguet A, Bourgois J, Vanhee L, Achten E, Derave W (2010) Important role of muscle carnosine in rowing performance. J Appl Physiol 109:1096–1101

Article  PubMed  Google Scholar 

Balog EM, Fitts RH (2001) Effects of depolarization and low intracellular pH on charge movement currents of frog skeletal muscle fibers. J Appl Physiol 90:228–234

Article  CAS  PubMed  Google Scholar 

Bandschapp O, Soule CL, Iaizzo PA (2012) Lactic acid restores skeletal muscle force in an in vitro fatigue model: are voltage-gated chloride channels involved? Am J Physiol Cell Physiol 302:C1019-1025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bangsbo J, Juel C (2006) Counterpoint: lactic acid accumulation is a disadvantage during muscle activity. J Appl Physiol 100:1412–1413

CAS  PubMed  Google Scholar 

Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartlett MF, Fitzgerald LF, Kent JA (2021) Rates of oxidative ATP synthesis are not augmented beyond the pH threshold in human vastus lateralis muscles during a stepwise contraction protocol. J Physiol 599(7):1997–2013

Article  CAS  PubMed  Google Scholar 

Bartlett MF, Fitzgerald LF, Nagarajan R, Hiroi Y, Kent JA (2020) Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions. J Physiol 598(10):1847–1863

Article  CAS  PubMed  Google Scholar 

Bennetts B, Parker MW, Cromer BA (2007) Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP. J Biol Chem 282:32780–32791

Article  CAS  PubMed  Google Scholar 

Bird SR, Wiles J, Robbins J (1995) The effect of sodium bicarbonate ingestion on 1500-m racing time. J Sports Sci 13:399–403

Article  CAS  PubMed  Google Scholar 

Bisetto S, Wright MC, Nowak RA, Lepore AC, Khurana TS, Loro E, Philp NJ (2019) New insights into the lactate shuttle: role of MCT4 in the modulation of exercise capacity. iScience 22:507–518

Article  PubMed  PubMed Central  Google Scholar 

Bishop D, Edge J, Davis C, Goodman C (2004) Induced metabolic alkalosis affects muscle metabolism and repeated sprint ability. Med Sci Sports Exerc 36(5):807–813

Article  CAS  PubMed  Google Scholar 

Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, Thompson C, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A (2017) Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol 122:446–459

Article  CAS  PubMed  Google Scholar 

Black MI, Jones AM, Morgan PT, Bailey SJ, Fulford J, Vanhatalo A (2018) The effects of β-alanine supplementation on muscle pH and the power-duration relationship during high-intensity exercise. Front Physiol 9:111

Article  PubMed  PubMed Central  Google Scholar 

Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Richardson RS, Amann M (2016) Group III/IV muscle afferents limit the intramuscular metabolic perturbations during whole body exercise in humans. J Physiol 594(18):5303–5315

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanchard EM, Pan B-S, Solaro RJ (1984) The effect of acidic pH on the ATPase activity and troponin Ca2+ binding of rabbit skeletal myofilaments. J Biol Chem 259(5):3181–3186

Article  CAS  PubMed  Google Scholar 

Boegman S, Stellingwerff T, Shaw G, Clarke N, Graham K, Cross R, Siegler JC (2020) The impact of individualizing sodium bicarbonate supplementation strategies on world-class rowing performance. Front Nutr 7:article 138

Bogdanis GC, Nevill ME, Boobis LH, Lakomy HKA, Nevill AM (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 482(2):567–480

Article  Google Scholar 

Bogdanis GC, Nevill ME, Lakomy HKA (1994) Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling. J Sports Sci 12:363–370

Article  CAS  PubMed  Google Scholar 

Bogdanis GC, Nevill ME, Lakomy HKA, Boobis LH (1998) Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 163:261–272

Article  CAS  PubMed  Google Scholar 

Boushel R, Madsen P, Nielsen HB, Quistorff B, Secher NH (1998) Contribution of pH, diprotonated phosphate and potassium for the reflex increase in blood pressure during handgrip. Acta Physiol Scand 164:269–275

Article  CAS  PubMed  Google Scholar 

Brien DM, McKenzie DC (1989) The effect of induced alkalosis and acidosis on plasma lactate and work output in elite oarsmen. Eur J Appl Physiol 58:797–802

Article  CAS  Google Scholar 

Bret C, Lacour J-R, Bourdin M, Locatelli E, de Angelis M, Faina M, Rahmani A, Messonnier L (2013) Differences in lactate exchange and removal abilities between high-level Aftrican and caucasian 400-m track runners. Eur J Appl Physiol 113:1489–1498

Article  CAS  PubMed  Google Scholar 

Broch-Lips M, Overgaard K, Praetorius HA, Nielsen OB (2007) Effects of extracellular HCO3− on fatigue, pHi, and K+ efflux in rat skeletal muscles. J Appl Physiol 103(2):494–503

Article  CAS  PubMed  Google Scholar 

Brody LR, Pollock MT, Roy SH, de Luca CJ, Celli B (1991) pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol 71(5):1878–1885

Article  CAS  PubMed  Google Scholar 

Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab Rev 27:757–785

Article  CAS  Google Scholar 

Brooks GA, Curl CC, Leija RG, Osmond AD, Duong JJ, Arevalo JJ (2022) Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med 54(9):1332–1347

Comments (0)

No login
gif