Agostoni E (1963) Diaphragm activity during breath holding: factors related to its onset. J Appl Physiol 18:30–36. https://doi.org/10.1152/jappl.1963.18.1.30
Article CAS PubMed Google Scholar
Alkan N, Akis T (2013) Psychological characteristics of free diving athletes: a comparative study. Int J Humanit Soc Sci 3(15):150–157
Allinger J, Gueit P, Faure S, Costalat G, Lemaitre F (2024a) Cognitive impairments after maximal repeated breath-holding in elite breath-hold divers. J Sports Med Phys Fitness. https://doi.org/10.23736/s0022-4707.24.16564-4
Allinger J, Noulhiane M, Féménias D, Louvet B, Clua E, Bouyeure A, Lemaître F (2024b) Risk profiles of elite breath-hold divers. Int J Environ Health Res. https://doi.org/10.1080/09603123.2024.2368718
Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249. https://doi.org/10.1113/jphysiol.1985.sp015794
Article CAS PubMed PubMed Central Google Scholar
Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451(7181):1008–1012. https://doi.org/10.1038/nature06613
Article CAS PubMed Google Scholar
Asmussen E, Kristiansson NG (1968) The “diving bradycardia” in exercising man. Acta Physiol Scand 73(4):527–535. https://doi.org/10.1111/j.1365-201x.1968.tb10892.x
Article CAS PubMed Google Scholar
Astolfi T, Crettaz VONRF, Kayser B, Saugy M, Faiss R (2022) Hematological variables in recreational breath-hold divers: a longitudinal study. J Sports Med Phys Fitness 62(8):1103–1109. https://doi.org/10.23736/s0022-4707.21.12918-4
Ayers AB, Davies BN, Withrington PG (1972) Responses of the isolated, perfused human spleen to sympathetic nerve stimulation, catecholamines and polypeptides. Br J Pharmacol 44(1):17–30. https://doi.org/10.1111/j.1476-5381.1972.tb07234.x
Article CAS PubMed PubMed Central Google Scholar
Bae KA, An NY, Kwon YW, Kim C, Yoon CS, Park SC, Kim CK (2003) Muscle fibre size and capillarity in Korean diving women. Acta Physiol Scand 179(2):167–172. https://doi.org/10.1046/j.1365-201X.2003.01185.x
Article CAS PubMed Google Scholar
Baković D, Valic Z, Eterović D, Vukovic I, Obad A, Marinović-Terzić I, Dijić Z (2003) Spleen volume and blood flow response to repeated breath-hold apneas. J Appl Physiol (1985) 95(4):1460–1466. https://doi.org/10.1152/japplphysiol.00221.2003
Bakovic D, Pivac N, Zubin Maslov P, Breskovic T, Damonja G, Dujic Z (2013) Spleen volume changes during adrenergic stimulation with low doses of epinephrine. J Physiol Pharmacol 64(5):649–655
Barlow MJ, Ross C, Cockrell R, Rubie M, Cahill H, Robertson C, French J, Elia A (2024) Effects of five serial apnoeas prior to a running time trial in competitive athletes. J Sci Sport Exerc. https://doi.org/10.1007/s42978-024-00296-7
Beedie C, Benedetti F, Barbiani D, Camerone E, Cohen E, Coleman D, Davis A, Elsworth-Edelsten C, Flowers E, Foad A, Harvey S, Hettinga F, Hurst P, Lane A, Lindheimer J, Raglin J, Roelands B, Schiphof-Godart L, Szabo A (2018) Consensus statement on placebo effects in sports and exercise: the need for conceptual clarity, methodological rigour, and the elucidation of neurobiological mechanisms. Eur J Sport Sci 18(10):1383–1389. https://doi.org/10.1080/17461391.2018.1496144
Bejder J, Breenfeldt Andersen A, Solheim SA, Gybel-Brask M, Secher NH, Johansson PI, Nordsborg NB (2019) Time trial performance is sensitive to low-volume autologous blood transfusion. Med Sci Sports Exerc 51(4):692–700. https://doi.org/10.1249/mss.0000000000001837
Billaut F, Gueit P, Faure S, Costalat G, Lemaître F (2018) Do elite breath-hold divers suffer from mild short-term memory impairments? Appl Physiol Nutr Metab 43(3):247–251. https://doi.org/10.1139/apnm-2017-0245
Bishop D, Girard O, Mendez-Villanueva A (2011) Repeated-sprint ability—part II: recommendations for training. Sports Med 41(9):741–756. https://doi.org/10.2165/11590560-000000000-00000
Bourdas DI, Geladas ND (2021) Five repeated maximal efforts of apneas increase the time to exhaustion in subsequent high-intensity exercise. Respir Physiol Neurobiol 292:103703. https://doi.org/10.1016/j.resp.2021.103703
Bourdas DI, Geladas ND (2024) Physiological responses during static apnoea efforts in elite and novice breath-hold divers before and after two weeks of dry apnoea training. Respir Physiol Neurobiol 319:104168. https://doi.org/10.1016/j.resp.2023.104168
Article CAS PubMed Google Scholar
Bouten J, Caen K, Stautemas J, Lefevere F, Derave W, Lootens L, Van Eenoo P, Bourgois JG, Boone J (2019) Eight weeks of static apnea training increases spleen volume but not acute spleen contraction. Respir Physiol Neurobiol 266:144–149. https://doi.org/10.1016/j.resp.2019.04.002
Bouten J, Colosio AL, Bourgois G, Lootens L, VaneBourgoisBoone PJGJ (2020) Acute apnea does not improve 3-km cycling time trial performance. Med Sci Sports Exerc 52(5):1116–1125. https://doi.org/10.1249/MSS.0000000000002236
Bouten J, Debusschere J, Lootens L, Declercq L, Van Eenoo P, Boone J, Bourgois JG (2022) Six weeks of static apnea training does not affect Hbmass and exercise performance. J Appl Physiol 132(3):673–681. https://doi.org/10.1152/japplphysiol.00770.2021
Article CAS PubMed Google Scholar
Bouten J, Declercq L, Boone J, Brocherie F, Bourgois JG (2024) Apnoea as a novel method to improve exercise performance: a current state of the literature. Exp Physiol. https://doi.org/10.1113/ep091905
Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD (1996) Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol (1985) 81(1):355–361. https://doi.org/10.1152/jappl.1996.81.1.355
Article CAS PubMed Google Scholar
Breskovic T, Steinback CD, Salmanpour A, Shoemaker JK, Dujic Z (2011) Recruitment pattern of sympathetic neurons during breath-holding at different lung volumes in apnea divers and controls. Auton Neurosci 164(1–2):74–81. https://doi.org/10.1016/j.autneu.2011.05.003
Calbet JA, Lundby C, Koskolou M, Boushel R (2006) Importance of hemoglobin concentration to exercise: acute manipulations. Respir Physiol Neurobiol 151(2–3):132–140. https://doi.org/10.1016/j.resp.2006.01.014
Article CAS PubMed Google Scholar
Cerretelli P, Di Prampero PE (1987) Gas exchange in exercise. In: Handbook of physiology. Bethesda, MD: American Physiological Society, pp 297–339
Christoulas Y, Bourdas DI, Michailidis Y, Mavrovouniotis I, Metaxas TI, Christoulas K, Koutlianos NA (2024) Acute ergogenic effects of repetitive maximal breath-holding maneuvers on hematological and physiological responses: a graded exercise test investigation. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05624-x
Connaughton D, Wadey R, Hanton S, Jones G (2008) The development and maintenance of mental toughness: perceptions of elite performers. J Sports Sci 26(1):83–95. https://doi.org/10.1080/02640410701310958
Convertino VA (1991) Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 23(12):1338–1348
Article CAS PubMed Google Scholar
Costalat G, Pichon A, Joulia F, Lemaitre F (2015) Modeling the diving bradycardia: toward an “oxygen-conserving breaking point”? Eur J Appl Physiol 115(7):1475–1484. https://doi.org/10.1007/s00421-015-3129-5
Comments (0)