Targeting Lactic Acid Modification in Ischemic Heart Diseases: Novel Therapeutics and Mechanism

Młynarska E, Czarnik W, Fularski P, et al. From atherosclerotic plaque to myocardial infarction-the leading cause of coronary artery occlusion. Int J Mol Sci. 2024;25(13):7295.

Article  PubMed  PubMed Central  Google Scholar 

Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015;5(4):1841–75.

Article  PubMed  Google Scholar 

Dodd MS, Atherton HJ, Carr CA, et al. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging. 2014;7(6):895–904.

Article  PubMed  PubMed Central  Google Scholar 

Moon CM, Kim YH, Ahn YK, Jeong MH, Jeong GW. Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1-(13)C] pyruvate MR spectroscopy. Sci Rep. 2019;9(1):18427.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li P, Ge J, Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol. 2020;17(2):96–115.

Article  CAS  PubMed  Google Scholar 

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022;131(11):893–908.

Article  CAS  PubMed  Google Scholar 

Moreno-Yruela C, Zhang D, Wei W, et al. Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. Sci Adv. 2022;8(3):eabi6696.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan M, Yang K, Wang X, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 2023;9(5):eadc9465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29(1):133–46.

Article  CAS  PubMed  Google Scholar 

Rho H, Terry AR, Chronis C, Hay N. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 2023;35(8):1406-1423.e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Jiang H, Dong M, et al. Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation. Cell Rep. 2024;43(5):114180.

Article  CAS  PubMed  Google Scholar 

Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

Article  CAS  PubMed  Google Scholar 

Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res. 2023;119(10):1905–14.

Article  PubMed  PubMed Central  Google Scholar 

Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing cardiac metabolism: a scientific statement from the american heart association. Circ Res. 2016;118(10):1659–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol. 2003;206(Pt 17):2911–22.

Article  CAS  PubMed  Google Scholar 

Abel ED. Glucose transport in the heart. Front Biosci J Virtual Libr. 2004;9:201–15.

Article  CAS  Google Scholar 

Van Steenbergen A, Balteau M, Ginion A, et al. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep. 2017;7:41166.

Article  PubMed  PubMed Central  Google Scholar 

Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res. 2009;84(1):111–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anttila T, Herajärvi J, Laaksonen H, et al. Remote ischemic preconditioning and hypoxia-induced biomarkers in acute myocardial infarction: study on a porcine model. Scand Cardiovasc J SCJ. 2023;57(1):2251730.

Article  PubMed  Google Scholar 

Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep. 2012;9(3):164–73.

Article  CAS  PubMed  Google Scholar 

King LM, Opie LH. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. Cardiovasc Res. 1998;39(2):381–92.

Article  CAS  PubMed  Google Scholar 

Banerjee SK, Wang DW, Alzamora R, et al. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol. 2010;49(4):683–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferté L, Marino A, Battault S, et al. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol. 2021;320(2):H838–53.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Agrawal V, Ramratnam M, et al. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury. Cardiovasc Res. 2019;115(11):1646–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bobulescu IA, Di Sole F, Moe OW. Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens. 2005;14(5):485–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vassalle M, Lin CI. Calcium overload and cardiac function. J Biomed Sci. 2004;11(5):542–65.

Article  CAS  PubMed  Google Scholar 

Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A. 2006;103(20):7607–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif