Apelin13 Loaded Nano-Niosomes Confer Cardioprotection in a Rat Model of Myocardial Ischemia Reperfusion by Targeting the Nrf2/HO-1 Pathway

Smit M, Coetzee A, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020;34(9):2501–12.

Article  PubMed  Google Scholar 

Heusch G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med. 2024;5(1):10–31.

Article  CAS  PubMed  Google Scholar 

Zhang S, et al. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. Phytomedicine. 2024;155649

Jennings RB. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res. 2013;113(4):428–38.

Article  CAS  PubMed  Google Scholar 

Zhang Y and Ren J. Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Am Heart Assoc. 2014;1088–1091.

Xia P, Liu Y, and Cheng Z. Signaling pathways in cardiac myocyte apoptosis. BioMed Res Int. 2016

Ibáñez B, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.

Article  PubMed  Google Scholar 

Kleinz MJ, Davenport AP. Emerging roles of apelin in biology and medicine. Pharmacol Ther. 2005;107(2):198–211.

Article  CAS  PubMed  Google Scholar 

Kuba K, et al. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides. 2019;111:62–70.

Article  CAS  PubMed  Google Scholar 

Lv S, et al. Relationship between Apelin/APJ signaling, oxidative stress, and diseases. Oxid Med Cell Longev. 2021;2021:1–7.

Article  Google Scholar 

Azizi Y, et al. Post-infarct treatment with [Pyr1]-apelin-13 reduces myocardial damage through reduction of oxidative injury and nitric oxide enhancement in the rat model of myocardial infarction. Peptides. 2013;46:76–82.

Article  CAS  PubMed  Google Scholar 

Zhong S, et al. Apelin-13 alleviated cardiac fibrosis via inhibiting the PI3K/Akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. Biosci Rep. 2020;40(4):BSR20200040.

Vitale E, et al. Apelin-13 increases functional connexin-43 through autophagy inhibition via AKT/mTOR Pathway in the non-myocytic cell population of the heart. Int J Mol Sci. 2022;23(21):13073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng G-G, et al. Apelin-13: a protective role in vascular diseases. Cur Probl Cardiol. 2023;102088.

Zheng X, et al. Apelin-13 inhibits ischemia–reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy. FASEB J. 2025;39(2): e70319.

Article  CAS  PubMed  Google Scholar 

Xu S, et al. Nano-liposomal encapsulation-delivered apelin-13 attenuates Ev71 infection-induced neurodegeneration by modulating Il-6 and Tlr7. J Mod Nanotechnol 2022;2(1).

Zeng G-G, et al. Apelin-13: a protective role in vascular diseases. Curr Probl Cardiol. 2024;49(1): 102088.

Article  PubMed  Google Scholar 

Naseroleslami M, et al. DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(9):2127–36.

Article  CAS  PubMed  Google Scholar 

Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17:849–65.

Article  CAS  Google Scholar 

Liu R, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2): 107518.

Article  CAS  Google Scholar 

Amani H, et al. Immunomodulatory biomaterials: tailoring surface properties to mitigate foreign body reaction and enhance tissue regeneration. Adv Healthc Mater. 2024;13(29):2401253.

Article  CAS  Google Scholar 

Witika BA, et al. Current advances in specialised niosomal drug delivery: manufacture, characterization and drug delivery applications. Int J Mol Sci. 2022;23(17):9668.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izhar MP, et al. Drug delivery through niosomes: a comprehensive review with therapeutic applications. J Clust Sci 2023;1–17.

Zhen K, et al. Circulating extracellular vesicles from heart failure patients inhibit human cardiomyocyte activities. J Cardiovasc Transl Res. 2024;1–18.

Li R-l, et al. Effect and mechanism of LRP6 on cardiac myocyte ferroptosis in myocardial infarction. Oxidative Med Cell Longev. 2021.

Govindasami S, et al. Therapeutic potential of biochanin-A against isoproterenol-induced myocardial infarction in rats. Cardiovasc Hematol Agents Med Chem. (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents). 2020;18(1):31–36.

Panda VS, Naik SR. Cardioprotective activity of Ginkgo biloba phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp Toxicol Pathol. 2008;60(4–5):397–404.

Article  PubMed  Google Scholar 

Del Re DP, et al. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–817.

Article  PubMed  PubMed Central  Google Scholar 

Li D, et al. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother. 2022;153: 113279.

Article  CAS  PubMed  Google Scholar 

Fang X, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20(1):7–23.

Article  PubMed  Google Scholar 

Lillo-Moya J, et al. Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants. 2021;10(5):667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi M, et al. Pathological roles of iron in cardiovascular disease. Curr Drug Targets. 2018;19(9):1068–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sullivan J. Iron and the sex difference in heart disease risk. The Lancet. 1981;317(8233):1293–4.

Article  Google Scholar 

Salonen JT, et al. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;86(3):803–11.

Article  CAS  PubMed  Google Scholar 

Fang X, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 2020;127(4):486–501.

Article  CAS  PubMed  Google Scholar 

Tang S, et al. The role of iron, its metabolism and ferroptosis in traumatic brain injury. Front Cell Neurosci. 2020;14: 590789.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med. 2021;162:435–49.

Article  CAS  Google Scholar 

Li N, et al. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res. 2021;166: 105466.

Article  CAS  PubMed  Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23: 101107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ucar BI, et al. Pharmacological protection against ischemia-reperfusion injury by regulating the Nrf2-Keap1-ARE signaling pathway. Antioxidants. 2021;10(6):823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, et al. Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J Bioenerg Biomembr. 2019;51:393–402.

Article  CAS  PubMed  Google Scholar 

Tian H, et al. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia–reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones. 2022;27(2):149–64.

Article 

Comments (0)

No login
gif