Hatoum H, Lilly SM, Crestanello J, Dasi LP. A case study on implantation strategies to mitigate coronary obstruction in a patient receiving transcatheter aortic valve replacement. J Biomech. 2019;89:115–8. https://doi.org/10.1016/j.jbiomech.2019.04.010.
Article PubMed PubMed Central Google Scholar
Heitkemper M, Hatoum H, Azimian A, Yeats B, Dollery J, Whitson B, Rushing G, Crestanello J, Lilly SM, Dasi LP. Modeling risk of coronary obstruction during transcatheter aortic valve replacement. J Thorac Cardiovasc Surg. 2020;159:829–838.e823. https://doi.org/10.1016/j.jtcvs.2019.04.091.
Hatoum H, Singh-Gryzbon S, Esmailie F, Ruile P, Neumann FJ, Blanke P, Thourani VH, Yoganathan AP, Dasi LP. Predictive Model for Thrombus Formation After Transcatheter Valve Replacement. Cardiovasc Eng Technol. 2021;12:576–88. https://doi.org/10.1007/s13239-021-00596-x.
Article PubMed PubMed Central Google Scholar
Heitkemper M, Sivakumar S, Hatoum H, Dollery J, Lilly SM, Dasi LP. Simple 2-dimensional anatomic model to predict the risk of coronary obstruction during transcatheter aortic valve replacement. J Thorac Cardiovasc Surg. 2021;162:1075–1083.e1071. https://doi.org/10.1016/j.jtcvs.2020.01.085.
Asadbeygi A, Lee S, Kovalchin J, Hatoum H. Predicting hemodynamic indices in coronary artery aneurysms using response surface method: An application in Kawasaki disease. Comput Methods Programs Biomed. 2022;224:107007. https://doi.org/10.1016/j.cmpb.2022.107007.
Alkhouli M, Hatoum H, Piazza N. Computational Modeling to Guide Structural Heart Interventions: Measure Twice (or Thrice) But Cut Once. JACC Cardiovasc Interv. 2023;16:667–9. https://doi.org/10.1016/j.jcin.2023.01.006.
Vogl BJ, Chavez-Ponce A, Wentworth A, Erie E, Yadav P, Thourani VH, Dasi LP, Lindman B, Alkhouli M, Hatoum H. Differential Impact of Blood Pressure Control Targets on Epicardial Coronary Flow After Transcatheter Aortic Valve Replacement. Struct Heart. 2024;8:100230. https://doi.org/10.1016/j.shj.2023.100230.
Hatoum H, Maureira P, Lilly S, Dasi LP. Impact of Leaflet Laceration on Transcatheter Aortic Valve-in-Valve Washout: BASILICA to Solve Neosinus and Sinus Stasis. JACC Cardiovasc Interv. 2019;12:1229–37. https://doi.org/10.1016/j.jcin.2019.04.013.
Article PubMed PubMed Central Google Scholar
Lin TC, Tintut Y, Lyman A, Mack W, Demer LL, Hsiai TK. Mechanical Response of a Calcified Plaque Model to Fluid Shear Force. Ann Biomed Eng. 2006;34:1535–41. https://doi.org/10.1007/s10439-006-9182-9.
Wang J, Gao Q, Wei R, Wang J. Experimental study on the effect of an artificial cardiac valve on the left ventricular flow. Exp Fluids. 2017;58:126. https://doi.org/10.1007/s00348-017-2409-8.
Vogl BJ, Shaer AE, Van Zyl M, Killu AM, Alkhouli M, Hatoum H. Effect of catheter ablation on the hemodynamics of the left atrium. J Interv Card Electrophysiol. 2022;65:83–96. https://doi.org/10.1007/s10840-022-01191-3.
Asadbeygi A, Lee S, Kovalchin J, Hatoum H. Effect of Beta Blockers on the Hemodynamics and Thrombotic Risk of Coronary Artery Aneurysms in Kawasaki Disease. J Cardiovasc Transl Res. 2023;16:852–61. https://doi.org/10.1007/s12265-023-10370-0.
Cilla M, Peña E, Martínez MA. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech Model Mechanobiol. 2012;11:1001–13. https://doi.org/10.1007/s10237-011-0369-0.
Article CAS PubMed Google Scholar
Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech. 2012;45:790–8. https://doi.org/10.1016/j.jbiomech.2011.11.019.
Article PubMed PubMed Central Google Scholar
Sadiq SK, Mazzeo MD, Zasada SJ, Manos S, Stoica I, Gale CV, Watson SJ, Kellam P, Brew S, Coveney PV. Patient-specific simulation as a basis for clinical decision-making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008;366:3199–219.
Capelli C, Sauvage E, Giusti G, Bosi GM, Ntsinjana H, Carminati M, Derrick G, Marek J, Khambadkone S, Taylor AM. Patient-specific simulations for planning treatment in congenital heart disease. Interface Focus. 2018;8:20170021.
Farag MB, Karmonik C, Rengier F, Loebe M, Karck M, von Tengg-Kobligk H, Ruhparwar A, Partovi S. Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure. Methodist Debakey Cardiovasc J. 2014;10:185–9. https://doi.org/10.14797/mdcj-10-3-185.
Article PubMed PubMed Central Google Scholar
Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A Study on the Compliance of a Right Coronary Artery and Its Impact on Wall Shear Stress. Journal of Biomechanical Engineering. 2008;130. https://doi.org/10.1115/1.2937744
Veinot JP, Harrity PJ, Gentile F, Khandheria BK, Bailey KR, Eickholt JT, Seward JB, Tajik AJ, Edwards WD. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for echocardiographic examination. Circulation. 1997;96:3112–5.
Article CAS PubMed Google Scholar
Al-Saady N, Obel O, Camm A. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999;82:547–54.
Article CAS PubMed PubMed Central Google Scholar
Dueñas-Pamplona J, García JG, Sierra-Pallares J, Ferrera C, Agujetas R, López-Mínguez JR. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients. Comput Biol Med. 2021;133:104423. https://doi.org/10.1016/j.compbiomed.2021.104423.
Aguado AM, Olivares AL, Yagüe C, Silva E, Nuñez-García M, Fernandez-Quilez Á, Mill J, Genua I, Arzamendi D, De Potter T. In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front Physiol. 2019;10:237.
Article PubMed PubMed Central Google Scholar
Armour CH, Guo B, Pirola S, Saitta S, Liu Y, Dong Z, Xu XY. The influence of inlet velocity profile on predicted flow in type B aortic dissection. Biomech Model Mechanobiol. 2021;20:481–90.
Vogl B, Shaer AE, Ponce AC, Bavo A, Beule MD, Alkhouli M, Hatoum H. TCT-380 Predicting Device-Related Thrombosis Using Computational Fluid Dynamics. J Am Coll Cardiol. 2022;80:B153–B153. https://doi.org/10.1016/j.jacc.2022.08.446.
Trusty PM, Alan Wei Z, Fogel MA, Maher K, Deshpande SR, Yoganathan AP. Computational modeling of a right-sided Fontan assist device: Effectiveness across patient anatomies and cannulations. J Biomech. 2020;109:109917. https://doi.org/10.1016/j.jbiomech.2020.109917.
Bshennaty A, Vogl BJ, Bavo AM, Sularz A, Kramer AD, Jia Y, et al. Understanding the role of the left atrial appendage on the flow in the atrium. Catheter Cardiovasc Interv. 2024;104(6):1290–8.
Bosi GM, Cook A, Rai R, Menezes LJ, Schievano S, Torii R, Burriesci GB. Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk. Front Cardiovasc Med. 2018;5:34. https://doi.org/10.3389/fcvm.2018.00034.
Article PubMed PubMed Central Google Scholar
Kjeldsberg HA, Albors C, Mill J, Medel DV, Camara O, Sundnes J, Valen-Sendstad K. Impact of left atrial wall motion assumptions in fluid simulations on proposed predictors of thrombus formation. International Journal for Numerical Methods in Biomedical Engineering. 2024;40:e3825. https://doi.org/10.1002/cnm.3825.
Fiala M, Wichterle D, Bulková V, Sknouril L, Nevralová R, Toman O, Dorda M, Januska J, Spinar J. A prospective evaluation of haemodynamics, functional status, and quality of life after radiofrequency catheter ablation of long-standing persistent atrial fibrillation. Europace. 2014;16:15–25. https://doi.org/10.1093/europace/eut161.
Mill J, Agudelo V, Olivares AL, Pons MI, Silva E, Nuñez-Garcia M, Morales X, Arzamendi D, Freixa X, Noailly J, et al. Sensitivity Analysis of In Silico Fluid Simulations to Predict Thrombus Formation after Left Atrial Appendage Occlusion. Mathematics. 2021;9:2304.
Tajeddini F, Romero DA, McClarty D, Chung J, Amon CH. Workflow Comparison for Combined 4D MRI/CFD Patient-Specific Cardiovascular Flow Simulations of the Thoracic Aorta. Journal of Fluids Engineering. 2023;145. https://doi.org/10.1115/1.4057047
García-Villalba M, Rossini L, Gonzalo A, Vigneault D, Martinez-Legazpi P
Comments (0)