New Types of Post-Translational Modification of Proteins in Cardiovascular Diseases

Zhang N, Zhang Y, Miao W, Shi C, Chen Z, Wu B, Zou Y, Ma Q, You S, Lu S, Huang X, Liu J, Xu J, Cao L, Sun Y. An unexpected role for BAG3 in regulating PARP1 ubiquitination in oxidative stress-related endothelial damage. Redox Biol. 2022;50:102238.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol. 2012;303:H940-966.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang N, Zhang Y, Wu B, You S, Sun Y. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 2020;30:101419.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Basak S, Lu C, Basak A. Post-translational protein modifications of rare and unconventional Types: Implications in functions and diseases. Curr Med Chem. 2016;23:714–45.

Article  PubMed  CAS  Google Scholar 

Liddy KA, White MY, Cordwell SJ. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Med. 2013;5:20.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 2023;8:220.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang HB, Huang SH, Xu M, Yang J, Yang J, Liu MX, Wan CX, Liao HH, Fan D, Tang QZ. Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J Cell Physiol. 2019;234:15654–67.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xiang M, Luo H, Wu J, Ren L, Ding X, Wu C, Chen J, Chen S, Zhang H, Yu L, Zou Y, Xu H, Ye P, Chen M, Xia J. ADAM23 in cardiomyocyte inhibits cardiac hypertrophy by targeting FAK-AKT signaling. J Am Heart Assoc. 2018;7:e008604.

Article  PubMed  PubMed Central  Google Scholar 

Luo JY, Cheng CK, He L, Pu Y, Zhang Y, Lin X, Xu A, Lau CW, Tian XY, Ma RCW, Jo H, Huang Y. Endothelial UCP2 is a mechanosensitive suppressor of atherosclerosis. Circ Res. 2022;131:424–41.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mao Y, Han CY, Hao L, Lee Y, Son JB, Choi H, Lee MR, Yang JD, Hong SK, Suh KS, Yu HC, Kim ND, Bae EJ, Park BH. p21-activated kinase 4 inhibition protects against liver ischemia/reperfusion injury: Role of nuclear factor erythroid 2-related factor 2 phosphorylation. Hepatology. 2022;76:345–56.

Article  PubMed  CAS  Google Scholar 

Zhuang L, Jia K, Chen C, Li Z, Zhao J, Hu J, Zhang H, Fan Q, Huang C, Xie H, Lu L, Shen W, Ning G, Wang J, Zhang R, Chen K, Yan X. DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics. Circulation. 2022;145:829–46.

Article  PubMed  CAS  Google Scholar 

Magadum A, Singh N, Kurian AA, Sharkar MTK, Chepurko E, Zangi L. Ablation of a single N-Glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration. Mol Ther Nucleic Acids. 2018;13:133–43.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen X, Zhang L, He H, Sun Y, Shen Q, Shi L. Increased O-GlcNAcylation induces myocardial hypertrophy. In Vitro Cell Dev Biol Anim. 2020;56:735–43.

Article  PubMed  CAS  Google Scholar 

Gao J, Xu D, Sabat G, Valdivia H, Xu W, Shi NQ. Disrupting KATP channels diminishes the estrogen-mediated protection in female mutant mice during ischemia-reperfusion. Clin Proteomics. 2014;11:19.

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Chatterjee S, Cipollo J. The glycoproteomics-MS for studying glycosylation in cardiac hypertrophy and heart failure. Proteomics Clin Appl. 2018;12:e1700075.

Article  PubMed  Google Scholar 

Papait R, Serio S, Pagiatakis C, Rusconi F, Carullo P, Mazzola M, Salvarani N, Miragoli M, Condorelli G. Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy. Circulation. 2017;136:1233–46.

Article  PubMed  CAS  Google Scholar 

Cai S, Wang P, Xie T, Li Z, Li J, Lan R, Ding Y, Lu J, Ye J, Wang J, Li Z, Liu P. Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/beta-catenin. Pharmacol Res. 2020;161:105104.

Article  PubMed  CAS  Google Scholar 

Jian D, Wang Y, Jian L, Tang H, Rao L, Chen K, Jia Z, Zhang W, Liu Y, Chen X, Shen X, Gao C, Wang S, Li M. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10:8939–56.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rosales W, Lizcano F. The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-Derived cardiomyocytes. Front Genet. 2018;9:14.

Article  PubMed  PubMed Central  Google Scholar 

Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ, Peng J. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med. 2021;162:339–52.

Article  PubMed  CAS  Google Scholar 

Zhang N, Zhang Y, Qian H, Wu S, Cao L, Sun Y. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling. Cell Death Differ. 2020;27:2605–19.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, Dasgupta S, Wang X, French KM, Villalobos E, Spurgin SB, Waldman M, Jiang N, May HI, Hill TM, Luo Y, Yoo H, Zaha VG, Lavandero S, Gillette TG, Hill JA. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun. 2021;12:1684.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou ZX, Ren Z, Yan BJ, Qu SL, Tang ZH, Wei DH, Liu LS, Fu MG, Jiang ZS. The Role of Ubiquitin E3 Ligase in Atherosclerosis. Curr Med Chem. 2021;28:152–68.

Article  PubMed  CAS  Google Scholar 

Zhao Y, Jia X, Yang X, Bai X, Lu Y, Zhu L, Cheng W, Shu M, Zhu Y, Du X, Wang L, Shu Y, Song Y, Jin S. Deacetylation of Caveolin-1 by Sirt6 induces autophagy and retards high glucose-stimulated LDL transcytosis and atherosclerosis formation. Metabolism. 2022;131: 155162.

Article  PubMed  CAS  Google Scholar 

Peng C, Luo X, Li S, Sun H. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol Biosyst. 2017;13:714–24.

Article  PubMed  CAS  Google Scholar 

Hu Q, Zhang H, Gutierrez Cortes N, Wu D, Wang P, Zhang J, Mattison JA, Smith E, Bettcher LF, Wang M, Lakatta EG, Sheu SS, Wang W. Increased Drp1 Acetylation by Lipid Overload Induces Cardiomyocyte Death and Heart Dysfunction. Circ Res. 2020;126:456–70.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, Park ZY, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T, Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca(2+)-ATPase in heart failure. Circ Res. 2019;124:e63–80.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comments (0)

No login
gif
Back To Top