Bozkurt, B, AJS Coats, H Tsutsui, et al., Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. European Journal of Heart Failure, 2021. 23: 352–380; https://doi.org/10.1002/ejhf.2115.
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.
Article CAS PubMed Google Scholar
Tanai E, Frantz S. Pathophysiology of Heart Failure. Compr Physiol. 2015;6:187–214. https://doi.org/10.1002/cphy.c140055.
Dutka M, Bobiński R, Ulman-Włodarz I, et al. Various aspects of inflammation in heart failure. Heart Failure Reviews. 2020;25:537–48. https://doi.org/10.1007/s10741-019-09875-1.
Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6. https://doi.org/10.1038/jhh.2014.36.
Article CAS PubMed Google Scholar
Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovascular Research. 2023;118:3272–87. https://doi.org/10.1093/cvr/cvac013.
Article CAS PubMed Google Scholar
Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137–46. https://doi.org/10.1136/hrt.2003.025270.
Article PubMed PubMed Central Google Scholar
Emmons-Bell S, Johnson C, Roth G. Prevalence, incidence and survival of heart failure: a systematic review. Heart. 2022;108:1351–60. https://doi.org/10.1136/heartjnl-2021-320131.
O’Donovan KJ, Tourtellotte WG, Millbrandt J, et al. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73. https://doi.org/10.1016/s0166-2236(98)01343-5.
Article CAS PubMed Google Scholar
Topilko P, Schneider-Maunoury S, Levi G, et al. Krox-20 controls myelination in the peripheral nervous system. Nature. 1994;371:796–9. https://doi.org/10.1038/371796a0.
Article CAS PubMed Google Scholar
Jang SW, LeBlanc SE, Roopra A, et al. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J Neurochem. 2006;98:1678–87. https://doi.org/10.1111/j.1471-4159.2006.04069.x.
Article CAS PubMed Google Scholar
Chen Z, Torrens JI, Anand A, et al. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 2005;1:93–106. https://doi.org/10.1016/j.cmet.2004.12.009.
Article CAS PubMed Google Scholar
Odelin G, Faure E, Kober F, et al. Loss of Krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes. Cardiovasc Res. 2014;104:443–55. https://doi.org/10.1093/cvr/cvu233.
Article CAS PubMed Google Scholar
Czimmerer Z, Halasz L, Daniel B, et al. The epigenetic state of IL-4-polarized macrophages enables inflammatory cistromic expansion and extended synergistic response to TLR ligands. Immunity. 2022;55:2006-2026.e6. https://doi.org/10.1016/j.immuni.2022.10.004.
Article CAS PubMed PubMed Central Google Scholar
Ashton KJ, Tupicoff A, Williams-Pritchard G, et al. Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium. PLoS One. 2013;8:e72278. https://doi.org/10.1371/journal.pone.0072278.
Article CAS PubMed PubMed Central Google Scholar
Bo Z, Huang S, Li L, et al. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovascular Disorders. 2022;22:373. https://doi.org/10.1186/s12872-022-02814-3.
Article CAS PubMed PubMed Central Google Scholar
Yu YD, Xue YT, Li Y. Identification and verification of feature biomarkers associated in heart failure by bioinformatics analysis. Sci Rep. 2023;13:3488. https://doi.org/10.1038/s41598-023-30666-0.
Article CAS PubMed PubMed Central Google Scholar
Kirkby B, Roman N, Kobe B, et al. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res. 2010;49:366–77. https://doi.org/10.1016/j.plipres.2010.04.001.
Article CAS PubMed Google Scholar
Xia C, Dong R, Chen C, et al. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality. Biochem Biophys Res Commun. 2015;468:533–40. https://doi.org/10.1016/j.bbrc.2015.10.078.
Article CAS PubMed Google Scholar
Alzhrani AA, Rasool M, Karim S, et al. KDM3A knockdown regulates COMP, LOX, COL8A1 and ACOT1 genes in myocardial fibrosis. Bioinformation. 2024;20:305–13. https://doi.org/10.6026/973206300200305.
Article PubMed PubMed Central Google Scholar
Boyle KB, Hadaschik D, Virtue S, et al. The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ. 2009;16:782–9. https://doi.org/10.1038/cdd.2009.11.
Article CAS PubMed Google Scholar
Zhang Y, Feng W, Wang Z, et al. Early growth response 2 in the mPFC regulates mouse social and cooperative behaviors. Lab Anim (NY). 2023;52:37–50. https://doi.org/10.1038/s41684-022-01090-0.
Müller OJ, Heckmann MB, Ding L, et al. Comprehensive plasma and tissue profiling reveals systemic metabolic alterations in cardiac hypertrophy and failure. Cardiovasc Res. 2019;115:1296–305. https://doi.org/10.1093/cvr/cvy274.
Article CAS PubMed Google Scholar
Song X, Kusakari Y, Xiao CY, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299:C1256-66. https://doi.org/10.1152/ajpcell.00338.2010.
Article CAS PubMed PubMed Central Google Scholar
Yu Z, Xiao Z, Guan L, et al. Translocation of gasdermin D induced mitochondrial injury and mitophagy mediated quality control in lipopolysaccharide related cardiomyocyte injury. Clin Transl Med. 2022;12:e1002. https://doi.org/10.1002/ctm2.1002.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Zhang G, Dasgupta S, et al. ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research. 2022;131:91–105. https://doi.org/10.1161/circresaha.122.321050.
Article CAS PubMed PubMed Central Google Scholar
Zhao D, Zhong G, Li J, et al. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation. 2021;144:694–711. https://doi.org/10.1161/circulationaha.121.054827.
Article CAS PubMed Google Scholar
Tang Y, Wang Y, Park KM, et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovascular Research. 2015;106:387–97. https://doi.org/10.1093/cvr/cvv121.
Article CAS PubMed PubMed Central Google Scholar
Bosch L, de Haan JJ, Bastemeijer M, et al. The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis. Heart Failure Reviews. 2021;26:1515–24.
Comments (0)