Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes

Bozkurt, B, AJS Coats, H Tsutsui, et al., Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. European Journal of Heart Failure, 2021. 23: 352–380; https://doi.org/10.1002/ejhf.2115.

McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.

Article  CAS  PubMed  Google Scholar 

Tanai E, Frantz S. Pathophysiology of Heart Failure. Compr Physiol. 2015;6:187–214. https://doi.org/10.1002/cphy.c140055.

Article  PubMed  Google Scholar 

Dutka M, Bobiński R, Ulman-Włodarz I, et al. Various aspects of inflammation in heart failure. Heart Failure Reviews. 2020;25:537–48. https://doi.org/10.1007/s10741-019-09875-1.

Article  PubMed  Google Scholar 

Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6. https://doi.org/10.1038/jhh.2014.36.

Article  CAS  PubMed  Google Scholar 

Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovascular Research. 2023;118:3272–87. https://doi.org/10.1093/cvr/cvac013.

Article  CAS  PubMed  Google Scholar 

Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137–46. https://doi.org/10.1136/hrt.2003.025270.

Article  PubMed  PubMed Central  Google Scholar 

Emmons-Bell S, Johnson C, Roth G. Prevalence, incidence and survival of heart failure: a systematic review. Heart. 2022;108:1351–60. https://doi.org/10.1136/heartjnl-2021-320131.

Article  PubMed  Google Scholar 

O’Donovan KJ, Tourtellotte WG, Millbrandt J, et al. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73. https://doi.org/10.1016/s0166-2236(98)01343-5.

Article  CAS  PubMed  Google Scholar 

Topilko P, Schneider-Maunoury S, Levi G, et al. Krox-20 controls myelination in the peripheral nervous system. Nature. 1994;371:796–9. https://doi.org/10.1038/371796a0.

Article  CAS  PubMed  Google Scholar 

Jang SW, LeBlanc SE, Roopra A, et al. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J Neurochem. 2006;98:1678–87. https://doi.org/10.1111/j.1471-4159.2006.04069.x.

Article  CAS  PubMed  Google Scholar 

Chen Z, Torrens JI, Anand A, et al. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 2005;1:93–106. https://doi.org/10.1016/j.cmet.2004.12.009.

Article  CAS  PubMed  Google Scholar 

Odelin G, Faure E, Kober F, et al. Loss of Krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes. Cardiovasc Res. 2014;104:443–55. https://doi.org/10.1093/cvr/cvu233.

Article  CAS  PubMed  Google Scholar 

Czimmerer Z, Halasz L, Daniel B, et al. The epigenetic state of IL-4-polarized macrophages enables inflammatory cistromic expansion and extended synergistic response to TLR ligands. Immunity. 2022;55:2006-2026.e6. https://doi.org/10.1016/j.immuni.2022.10.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashton KJ, Tupicoff A, Williams-Pritchard G, et al. Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium. PLoS One. 2013;8:e72278. https://doi.org/10.1371/journal.pone.0072278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bo Z, Huang S, Li L, et al. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovascular Disorders. 2022;22:373. https://doi.org/10.1186/s12872-022-02814-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu YD, Xue YT, Li Y. Identification and verification of feature biomarkers associated in heart failure by bioinformatics analysis. Sci Rep. 2023;13:3488. https://doi.org/10.1038/s41598-023-30666-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirkby B, Roman N, Kobe B, et al. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res. 2010;49:366–77. https://doi.org/10.1016/j.plipres.2010.04.001.

Article  CAS  PubMed  Google Scholar 

Xia C, Dong R, Chen C, et al. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality. Biochem Biophys Res Commun. 2015;468:533–40. https://doi.org/10.1016/j.bbrc.2015.10.078.

Article  CAS  PubMed  Google Scholar 

Alzhrani AA, Rasool M, Karim S, et al. KDM3A knockdown regulates COMP, LOX, COL8A1 and ACOT1 genes in myocardial fibrosis. Bioinformation. 2024;20:305–13. https://doi.org/10.6026/973206300200305.

Article  PubMed  PubMed Central  Google Scholar 

Boyle KB, Hadaschik D, Virtue S, et al. The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ. 2009;16:782–9. https://doi.org/10.1038/cdd.2009.11.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Feng W, Wang Z, et al. Early growth response 2 in the mPFC regulates mouse social and cooperative behaviors. Lab Anim (NY). 2023;52:37–50. https://doi.org/10.1038/s41684-022-01090-0.

Article  PubMed  Google Scholar 

Müller OJ, Heckmann MB, Ding L, et al. Comprehensive plasma and tissue profiling reveals systemic metabolic alterations in cardiac hypertrophy and failure. Cardiovasc Res. 2019;115:1296–305. https://doi.org/10.1093/cvr/cvy274.

Article  CAS  PubMed  Google Scholar 

Song X, Kusakari Y, Xiao CY, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299:C1256-66. https://doi.org/10.1152/ajpcell.00338.2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Z, Xiao Z, Guan L, et al. Translocation of gasdermin D induced mitochondrial injury and mitophagy mediated quality control in lipopolysaccharide related cardiomyocyte injury. Clin Transl Med. 2022;12:e1002. https://doi.org/10.1002/ctm2.1002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Zhang G, Dasgupta S, et al. ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research. 2022;131:91–105. https://doi.org/10.1161/circresaha.122.321050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao D, Zhong G, Li J, et al. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation. 2021;144:694–711. https://doi.org/10.1161/circulationaha.121.054827.

Article  CAS  PubMed  Google Scholar 

Tang Y, Wang Y, Park KM, et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovascular Research. 2015;106:387–97. https://doi.org/10.1093/cvr/cvv121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosch L, de Haan JJ, Bastemeijer M, et al. The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis. Heart Failure Reviews. 2021;26:1515–24.

Comments (0)

No login
gif