Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407. https://doi.org/10.1038/s41569-018-0007-y.
Article CAS PubMed Google Scholar
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2004;109:1580–9. https://doi.org/10.1161/01.CIR.0000120390.68287.BB.
Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580–9. https://doi.org/10.1161/01.CIR.0000120390.68287.BB.
Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41. https://doi.org/10.1038/nrcardio.2010.165.
Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89:1401–38. https://doi.org/10.1007/s00204-015-1477-x.
Article CAS PubMed Google Scholar
Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J, Wang JX. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 2021;42:701–14. https://doi.org/10.1038/s41401-020-0496-1.
Article CAS PubMed Google Scholar
Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 2016;133:1249–63. https://doi.org/10.1161/CIRCULATIONAHA.115.020502.
Article CAS PubMed PubMed Central Google Scholar
Zhou QL, Meng D, Li F, Zhang X, Liu L, Zhu YJ, Liu SQ, Xu MJ, Deng JL, Lei ZY, Sluijter JPG, Xiao JJ. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine. 2022;85:104274. https://doi.org/10.1016/j.ebiom.2022.104274.
Article CAS PubMed PubMed Central Google Scholar
Ling HY, Zhang T, Pereira L, Means CK, Cheng HQ, Gu YS, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119:1230–40. https://doi.org/10.1172/JCI38022.
Article PubMed PubMed Central Google Scholar
Fenton B, Glover DM. A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature. 1993;363:637–40. https://doi.org/10.1038/363637a0.
Article CAS PubMed Google Scholar
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15:433–52. https://doi.org/10.1038/nrm3819.
Article CAS PubMed Google Scholar
Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol. 2009;10:265–75. https://doi.org/10.1038/nrm2653.
Article CAS PubMed Google Scholar
Barr FA, Silljé HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol. 2004;5:429–40. https://doi.org/10.1038/nrm1401.
Article CAS PubMed Google Scholar
Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development, Protein. Cell. 2012;3:182–97. https://doi.org/10.1007/s13238-012-2020-y.
Shi W, Zhang G, Ma Z, et al. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun. 2021;12:2812. https://doi.org/10.1038/s41467-021-23053-8.
Article CAS PubMed PubMed Central Google Scholar
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9:643–60. https://doi.org/10.1038/nrd3184.
Article CAS PubMed Google Scholar
Gheghiani L, Wang L, Zhang Y, et al. PLK1 induces chromosomal instability and overrides cell-cycle checkpoints to drive tumorigenesis. Cancer Res. 2021;81:1293–307. https://doi.org/10.1158/0008-5472.CAN-20-1377.
Article CAS PubMed Google Scholar
Montaudon E, Nikitorowicz-Buniak J, Sourd L, et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat Commun. 2020;11:4053. https://doi.org/10.1038/s41467-020-17697-1.
Article CAS PubMed PubMed Central Google Scholar
Chilamakuri R, Rouse DC, Agarwal S. Inhibition of polo-like kinase 1 by HMN-214 blocks cell cycle progression and inhibits neuroblastoma growth. Pharmaceuticals (Basel). 2022;15:523. https://doi.org/10.3390/ph15050523.
Article CAS PubMed Google Scholar
Jiang S, Tang DD. Plk1 regulates MEK1/2 and proliferation in airway smooth muscle cells. Respir Res. 2015;16(1):93. https://doi.org/10.1186/s12931-015-0257-8.
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, … Hill JA. Cooperative binding of ETS2 and NFAT Links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation. 2021;144(1):34–51. https://doi.org/10.1161/circulationaha.120.052384.
Ohta M, Zhao ZL, Wu D, Wang SH, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J Cell Biol. 2021;220:e202009083. https://doi.org/10.1083/jcb.202009083.
Article CAS PubMed PubMed Central Google Scholar
Schubert CV, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJ, Nigg EA. PLK1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep. 2015;12:66–78. https://doi.org/10.1016/j.celrep.2015.06.007.
Jones OA, Tiwari A, Olukoga T, Herbert A. Kok-Lung Chan, PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat Commun. 2019;10:2861. https://doi.org/10.1038/s41467-019-10938-y.
Gelot C, Kovacs MT, Miron S, et al. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature. 2023;621:415–22. https://doi.org/10.1038/s41586-023-06506-6.
Article CAS PubMed PubMed Central Google Scholar
Cholewa BD, Liu X, Ahmad N. The role of polo-like kinase 1 in carcinogenesis: cause or consequence? Cancer Res. 2013;73:6848–55. https://doi.org/10.1158/0008-5472.CAN-13-2197.
Article CAS PubMed Google Scholar
Deeraksa A, Pan J, Sha Y, Liu XD, Eissa NT, Lin SH, Yu-Lee LY. PLK1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene. 2013;32:2973–83. https://doi.org/10.1038/onc.2012.309.
Article CAS PubMed Google Scholar
Gao Z, Man X, Li Z, et al. PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3. Cancer Gene Ther. 2020;27:412–23. https://doi.org/10.1038/s41417-019-0094-x.
Article CAS PubMed Google Scholar
Gutteridge RE, Ndiaye MA, Liu X, Ahmad N. PLK1 inhibitors in cancer therapy: from laboratory to clinics. Mol Cancer Ther. 2016;15:1427–35. https://doi.org/10.1158/1535-7163.MCT-15-0897.
Comments (0)