PLK1 Downregulation Attenuates ET-1-Induced Cardiomyocyte Hypertrophy by Suppressing the ERK1/2 Pathway

Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407. https://doi.org/10.1038/s41569-018-0007-y.

Article  CAS  PubMed  Google Scholar 

Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2004;109:1580–9. https://doi.org/10.1161/01.CIR.0000120390.68287.BB.

Article  Google Scholar 

Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580–9. https://doi.org/10.1161/01.CIR.0000120390.68287.BB.

Article  PubMed  Google Scholar 

Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41. https://doi.org/10.1038/nrcardio.2010.165.

Article  PubMed  Google Scholar 

Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89:1401–38. https://doi.org/10.1007/s00204-015-1477-x.

Article  CAS  PubMed  Google Scholar 

Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J, Wang JX. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 2021;42:701–14. https://doi.org/10.1038/s41401-020-0496-1.

Article  CAS  PubMed  Google Scholar 

Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 2016;133:1249–63. https://doi.org/10.1161/CIRCULATIONAHA.115.020502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou QL, Meng D, Li F, Zhang X, Liu L, Zhu YJ, Liu SQ, Xu MJ, Deng JL, Lei ZY, Sluijter JPG, Xiao JJ. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine. 2022;85:104274. https://doi.org/10.1016/j.ebiom.2022.104274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling HY, Zhang T, Pereira L, Means CK, Cheng HQ, Gu YS, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119:1230–40. https://doi.org/10.1172/JCI38022.

Article  PubMed  PubMed Central  Google Scholar 

Fenton B, Glover DM. A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature. 1993;363:637–40. https://doi.org/10.1038/363637a0.

Article  CAS  PubMed  Google Scholar 

Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15:433–52. https://doi.org/10.1038/nrm3819.

Article  CAS  PubMed  Google Scholar 

Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol. 2009;10:265–75. https://doi.org/10.1038/nrm2653.

Article  CAS  PubMed  Google Scholar 

Barr FA, Silljé HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol. 2004;5:429–40. https://doi.org/10.1038/nrm1401.

Article  CAS  PubMed  Google Scholar 

Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development, Protein. Cell. 2012;3:182–97. https://doi.org/10.1007/s13238-012-2020-y.

Article  CAS  Google Scholar 

Shi W, Zhang G, Ma Z, et al. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun. 2021;12:2812. https://doi.org/10.1038/s41467-021-23053-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9:643–60. https://doi.org/10.1038/nrd3184.

Article  CAS  PubMed  Google Scholar 

Gheghiani L, Wang L, Zhang Y, et al. PLK1 induces chromosomal instability and overrides cell-cycle checkpoints to drive tumorigenesis. Cancer Res. 2021;81:1293–307. https://doi.org/10.1158/0008-5472.CAN-20-1377.

Article  CAS  PubMed  Google Scholar 

Montaudon E, Nikitorowicz-Buniak J, Sourd L, et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat Commun. 2020;11:4053. https://doi.org/10.1038/s41467-020-17697-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chilamakuri R, Rouse DC, Agarwal S. Inhibition of polo-like kinase 1 by HMN-214 blocks cell cycle progression and inhibits neuroblastoma growth. Pharmaceuticals (Basel). 2022;15:523. https://doi.org/10.3390/ph15050523.

Article  CAS  PubMed  Google Scholar 

Jiang S, Tang DD. Plk1 regulates MEK1/2 and proliferation in airway smooth muscle cells. Respir Res. 2015;16(1):93. https://doi.org/10.1186/s12931-015-0257-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, … Hill JA. Cooperative binding of ETS2 and NFAT Links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation. 2021;144(1):34–51. https://doi.org/10.1161/circulationaha.120.052384.

Ohta M, Zhao ZL, Wu D, Wang SH, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J Cell Biol. 2021;220:e202009083. https://doi.org/10.1083/jcb.202009083.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schubert CV, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJ, Nigg EA. PLK1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep. 2015;12:66–78. https://doi.org/10.1016/j.celrep.2015.06.007.

Article  CAS  Google Scholar 

Jones OA, Tiwari A, Olukoga T, Herbert A. Kok-Lung Chan, PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat Commun. 2019;10:2861. https://doi.org/10.1038/s41467-019-10938-y.

Article  CAS  Google Scholar 

Gelot C, Kovacs MT, Miron S, et al. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature. 2023;621:415–22. https://doi.org/10.1038/s41586-023-06506-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cholewa BD, Liu X, Ahmad N. The role of polo-like kinase 1 in carcinogenesis: cause or consequence? Cancer Res. 2013;73:6848–55. https://doi.org/10.1158/0008-5472.CAN-13-2197.

Article  CAS  PubMed  Google Scholar 

Deeraksa A, Pan J, Sha Y, Liu XD, Eissa NT, Lin SH, Yu-Lee LY. PLK1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene. 2013;32:2973–83. https://doi.org/10.1038/onc.2012.309.

Article  CAS  PubMed  Google Scholar 

Gao Z, Man X, Li Z, et al. PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3. Cancer Gene Ther. 2020;27:412–23. https://doi.org/10.1038/s41417-019-0094-x.

Article  CAS  PubMed  Google Scholar 

Gutteridge RE, Ndiaye MA, Liu X, Ahmad N. PLK1 inhibitors in cancer therapy: from laboratory to clinics. Mol Cancer Ther. 2016;15:1427–35. https://doi.org/10.1158/1535-7163.MCT-15-0897.

Comments (0)

No login
gif