Graft CD8+ T cells for improving event-free survival after T cell-replete haploidentical stem cell transplantation in children with hematological malignancies

Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376:2009–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama H, Tabuchi K, Tawa A, Tsukimoto I, Tsuchida M, Morimoto A, et al. Outcome of children with relapsed acute myeloid leukemia following initial therapy under the AML99 protocol. Int J Hematol. 2014;100:171–9.

Article  CAS  PubMed  Google Scholar 

Rigaud C, Auperin A, Jourdain A, Haouy S, Couec ML, Aladjidi N, et al. Outcome of relapse in children and adolescents with B-cell non-Hodgkin lymphoma and mature acute leukemia: a report from the French LMB study. Pediatr Blood Cancer. 2019;66: e27873.

Article  PubMed  Google Scholar 

Yaniv I, Krauss AC, Beohou E, Dalissier A, Corbacioglu S, Zecca M, et al. Second hematopoietic stem cell transplantation for post-transplantation relapsed acute leukemia in children: a retrospective EBMT-PDWP study. Biol Blood Marrow Transplant. 2018;24:1629–42.

Article  PubMed  Google Scholar 

Sano H, Mochizuki K, Kobayashi S, Ohara Y, Ito M, Waragai T, et al. T-cell-replete haploidentical stem cell transplantation using low-dose antithymocyte globulin in children with relapsed or refractory acute leukemia. Int J Hematol. 2018;108:76–84.

Article  CAS  PubMed  Google Scholar 

Kobayashi S, Ito M, Sano H, Mochizuki K, Akaihata M, Waragai T, et al. T-cell-replete haploidentical stem cell transplantation is highly efficacious for relapsed and refractory childhood acute leukaemia. Transfus Med. 2014;24:305–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mochizuki K, Kikuta A, Ito M, Sano H, Akaihata M, Kobayashi S, et al. Feasibility of tacrolimus, methotrexate, and prednisolone as a graft-versus-host disease prophylaxis in non-T-cell-depleted haploidentical hematopoietic stem cell transplantation for children. Clin Transplant. 2011;25:892–7.

Article  CAS  PubMed  Google Scholar 

Guan L, Li X, Wei H, Gu Z, Zhao S, Zhu C, et al. T cell-replete haploidentical peripheral blood hematopoietic cell transplantation for treatment of T-lymphoblastic lymphoma. Ann Transplant. 2018;23:427–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi N, Mochizuki K, Sano H, Kobayashi S, Ohara Y, Ikeda K, et al. Decline of serum albumin precedes severe acute GVHD after haploidentical HSCT. Pediatr Int. 2021;63:1048–54.

Article  CAS  PubMed  Google Scholar 

Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant. 2006;38:291–7.

Article  PubMed  Google Scholar 

Luo Y, Xiao H, Lai X, Shi J, Tan Y, He J, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124(17):2735–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ, et al. Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res. 2002;8:2052–60.

CAS  PubMed  Google Scholar 

Kircher B, Stevanovic S, Urbanek M, Mitterschiffthaler A, Rammensee HG, Grünewald K, et al. Induction of HA-1-specific cytotoxic T-cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br J Haematol. 2002;117:935–9.

Article  PubMed  Google Scholar 

Alyea EP, Soiffer RJ, Canning C, Neuberg D, Schlossman R, Pickett C, et al. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91:3671–80.

Article  CAS  PubMed  Google Scholar 

Melief CJ. “License to kill” reflects joint action of CD4 and CD8 T cells. Clin Cancer Res. 2013;19:4295–6.

Article  CAS  PubMed  Google Scholar 

Warren EH, Deeg HJ. Dissecting graft-versus-leukemia from graft-versus-host-disease using novel strategies. Tissue Antigens. 2013;81:183–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reshef R, Huffman AP, Gao A, Luskin MR, Frey NV, Gill SI, et al. High graft CD8 cell dose predicts improved survival and enables better donor selection in allogeneic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol. 2015;33:2392–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel SS, Rybicki LA, Corrigan D, Dumont C, Bolwell B, Dean R, et al. Effect of bone marrow CD34+cells and T-cell subsets on clinical outcomes after myeloablative allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2019;54:775–81.

Article  CAS  PubMed  Google Scholar 

Cao TM, Wong RM, Sheehan K, Laport GG, Stockerl-Goldstein KE, Johnston LJ, et al. CD34, CD4, and CD8 cell doses do not influence engraftment, graft-versus-host disease, or survival following myeloablative human leukocyte antigen-identical peripheral blood allografting for hematologic malignancies. Exp Hematol. 2005;33:279–85.

Article  PubMed  Google Scholar 

Waller EK, Logan BR, Harris WA, Devine SM, Porter DL, Mineishi S, et al. Improved survival after transplantation of more donor plasmacytoid dendritic or naïve T cells from unrelated-donor marrow grafts: results from BMTCTN 0201. J Clin Oncol. 2014;32:2365–72.

Article  PubMed  PubMed Central  Google Scholar 

Luo XH, Chang YJ, Xu LP, Liu DH, Liu KY, Huang XJ. The impact of graft composition on clinical outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic SCT. Bone Marrow Transplant. 2009;43:29–36.

Article  CAS  PubMed  Google Scholar 

Liu DH, Zhao XS, Chang YJ, Liu YK, Xu LP, Chen H, et al. The impact of graft composition on clinical outcomes in pediatric patients undergoing unmanipulated HLA-mismatched/haploidentical hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2011;57:135–41.

Article  PubMed  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

Article  CAS  PubMed  Google Scholar 

Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubnitz JE, Inaba H. Childhood acute myeloid leukaemia. Br J Haematol. 2012;159:259–76.

Article  PubMed  PubMed Central  Google Scholar 

Kobayashi R, Sunami S, Mitsui T, Nakazawa A, Koga Y, Mori T, et al. Treatment of pediatric lymphoma in Japan: current status and plans for the future. Pediatr Int. 2015;57:523–34.

Article  PubMed  Google Scholar 

Saletta F, Seng MS, Lau LM. Advances in paediatric cancer treatment. Transl Pediatr. 2014;3:156–82.

PubMed  PubMed Central  Google Scholar 

Nikoloudis A, Buxhofer-Ausch V, Aichinger C, Binder M, Hasengruber P, Kaynak E, et al. Adverse impact of a high CD4/CD8 ratio in the allograft may be overcome by methotrexate but not mycophenolate or post-transplant cyclophosphamide-based graft-versus-host disease prophylaxis. Eur J Haematol. 2023;110(6):715–24.

Article  CAS  PubMed  Google Scholar 

Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–73.

Article  CAS  PubMed  Google Scholar 

Distler E, Albrecht J, Brunk A, Khan S, Schnürer E, Frey M, et al. Patient-individualized CD8⁺ cytolytic T-cell therapy effectively combats minimal residual leukemia in immunodeficient mice. Int J Cancer. 2016;138:1256–68.

Article  CAS  PubMed 

Comments (0)

No login
gif