Recent advances in understanding the biology of follicular lymphoma

Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2022;40:413–42.

Article  CAS  PubMed  Google Scholar 

Carbone A, Roulland S, Gloghini A, et al. Follicular lymphoma. Nat Rev Dis Primers. 2019;5(1):83.

Article  PubMed  Google Scholar 

Milpied P, Cervera-Marzal I, Mollichella ML, et al. Human germinal center transcriptional programs are de-synchronized in B cell lymphoma. Nat Immunol. 2018;19(9):1013–24.

Article  CAS  PubMed  Google Scholar 

Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer. 2018;18(4):224–39.

Article  CAS  PubMed  Google Scholar 

Kumar E, Pickard L, Okosun J. Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation. Br J Haematol. 2021;194(5):810–21.

Article  CAS  PubMed  Google Scholar 

Béguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23(5):677–92.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10):1190–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Vlasevska S, Wells VA, et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 2017;7(3):322–37.

Article  PubMed  PubMed Central  Google Scholar 

Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122(18):3165–8.

Article  PubMed  PubMed Central  Google Scholar 

Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81.

Article  CAS  PubMed  Google Scholar 

Ennishi D, Takata K, Béguelin W, et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019;9(4):546–63.

Article  PubMed  Google Scholar 

Otsuka Y, Nishikori M, Arima H, et al. EZH2 inhibitors restore epigenetically silenced CD58 expression in B-cell lymphomas. Mol Immunol. 2020;119:35–45.

Article  CAS  PubMed  Google Scholar 

Yuan H, Nishikori M, Otsuka Y, Arima H, Kitawaki T, Takaori-Kondo A. The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment. Cancer Sci. 2021;112(11):4604–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Bui T, Zhang Y. The pleiotropic roles of EZH2 in T-cell immunity and immunotherapy. Int J Hematol. 2022;116(6):837–45.

Article  CAS  PubMed  Google Scholar 

Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: follicular lymphoma as a paradigm. Immunol Rev. 2021;302(1):273–85.

Article  CAS  PubMed  Google Scholar 

Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

Article  CAS  PubMed  Google Scholar 

Bolen CR, McCord R, Huet S, et al. Mutation load and an effector T-cell gene signature may distinguish immunologically distinct and clinically relevant lymphoma subsets. Blood Adv. 2017;1(22):1884–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huet S, Tesson B, Jais JP, et al. A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. Lancet Oncol. 2018;19(4):549–61.

Article  PubMed  PubMed Central  Google Scholar 

Laurent C, Müller S, Do C, et al. Distribution, function, and prognostic value of cytotoxic T lymphocytes in follicular lymphoma: a 3-D tissue-imaging study. Blood. 2011;118(20):5371–9.

Article  CAS  PubMed  Google Scholar 

Alvaro T, Lejeune M, Salvadó MT, et al. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol. 2006;24(34):5350–7.

Article  PubMed  Google Scholar 

Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1–positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50.

Article  CAS  PubMed  Google Scholar 

Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–44.

Article  CAS  PubMed  Google Scholar 

Bolen CR, Mattiello F, Herold M, et al. Treatment dependence of prognostic gene expression signatures in de novo follicular lymphoma. Blood. 2021;137(19):2704–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–8.

Article  CAS  PubMed  Google Scholar 

Coelho V, Krysov S, Ghaemmaghami AM, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amin R, Mourcin F, Uhel F, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10.

Article  CAS  PubMed  Google Scholar 

van Bergen CAM, Kloet SL, Quinten E, et al. Acquisition of a glycosylated B-cell receptor drives follicular lymphoma toward a dark zone phenotype. Blood Adv. 2023;7(19):5812–6.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif