Amin N, McGrath A, Chen Y-PP (2019) Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 1:246–256. https://doi.org/10.1038/s42256-019-0051-2
Barik A, Das S (2018) A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria. RNA Biol 15:95–103. https://doi.org/10.1080/15476286.2017.1387709
Bartel DP (2004) MicroRNAs Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5
Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25:989–995. https://doi.org/10.1093/bioinformatics/btp107
Article CAS PubMed Google Scholar
Bisong E (2019) Introduction to scikit-learn. Building machine learning and deep learning models on google cloud platform. A, Berkeley, CA, pp 215–229
Bugnon LA, Yones C, Milone DH, Stegmayer G (2021) Genome-wide discovery of pre-miRNAs: comparison of recent approaches based on machine learning. Brief Bioinform 22. https://doi.org/10.1093/bib/bbaa184
Chen C, Tsai Y, Chang F, Lin W (2020) Ensemble feature selection in medical datasets: combining filter, wrapper, and embedded feature selection results. Expert Syst 37. https://doi.org/10.1111/exsy.12553
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288–1293. https://doi.org/10.1101/gad.1310605
Article CAS PubMed PubMed Central Google Scholar
Chen T, Guestrin C (2016) XGBoost. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 785–794
Fernandez A, Garcia S, Herrera F, Chawla NV (2018) SMOTE for learning from Imbalanced Data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905. https://doi.org/10.1613/jair.1.11192
Fromm B, Høye E, Domanska D, Zhong X, Aparicio-Puerta E, Ovchinnikov V, Umu SU, Chabot PJ, Kang W, Aslanzadeh M, Tarbier M, Mármol-Sánchez E, Urgese G, Johansen M, Hovig E, Hackenberg M, Friedländer MR, Peterson KJ (2022) MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res 50:D204–D210. https://doi.org/10.1093/nar/gkab1101
Article CAS PubMed Google Scholar
Fu X, Zhu W, Cai L, Liao B, Peng L, Chen Y, Yang J (2019) Improved pre-miRNAs identification through mutual information of pre-miRNA sequences and structures. Front Genet 10. https://doi.org/10.3389/fgene.2019.00119
Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22:424–432. https://doi.org/10.1016/j.drudis.2016.10.014
Article CAS PubMed Google Scholar
Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinf 5:140. https://doi.org/10.1186/1471-2105-5-140
Article CAS PubMed PubMed Central Google Scholar
Garg A, Roske Y, Yamada S, Uehata T, Takeuchi O, Heinemann U (2021) PIN and CCCH Zn-finger domains coordinate RNA targeting in ZC3H12 family endoribonucleases. Nucleic Acids Res 49:5369–5381. https://doi.org/10.1093/nar/gkab316
Article CAS PubMed PubMed Central Google Scholar
Gonzales GB, De Saeger S (2018) Elastic net regularized regression for time-series analysis of plasma metabolome stability under sub-optimal freezing condition. Sci Rep 8:3659. https://doi.org/10.1038/s41598-018-21851-7
Article CAS PubMed PubMed Central Google Scholar
Griffiths-Jones S (2006) MiRBase The MicroRNA sequence database. In: MicroRNA protocols. Humana, New Jersey, pp 129–138
Guan D-G, Liao J-Y, Qu Z-H, Zhang Y, Qu L-H (2011) mirExplorer: detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. RNA Biol 8:922–934. https://doi.org/10.4161/rna.8.5.16026
Article CAS PubMed Google Scholar
Gudyś A, Szcześniak MW, Sikora M, Makałowska I (2013) HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinf 14:83. https://doi.org/10.1186/1471-2105-14-83
Article PubMed PubMed Central Google Scholar
Hemphill E, Lindsay J, Lee C, Măndoiu II, Nelson CE (2014) Feature selection and classifier performance on diverse bio-logical datasets. BMC Bioinf 15:S4. https://doi.org/10.1186/1471-2105-15-S13-S4
Article PubMed PubMed Central Google Scholar
Hertel J, Stadler PF (2006) Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinf 22:e197–e202. https://doi.org/10.1093/bioinformatics/btl257
Article CAS PubMed Google Scholar
Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344. https://doi.org/10.1093/nar/gkm368
Article PubMed PubMed Central Google Scholar
Jouravleva K, Golovenko D, Demo G, Dutcher RC, Hall TMT, Zamore PD, Korostelev AA (2022) Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol Cell 82:4049–4063e6. https://doi.org/10.1016/j.molcel.2022.09.002
Article CAS PubMed PubMed Central Google Scholar
Kleftogiannis D, Theofilatos K, Likothanassis S, Mavroudi S (2015) YamiPred: a novel evolutionary method for predicting pre-miRNAs and selecting relevant features. IEEE/ACM Trans Comput Biol Bioinform 12:1183–1192. https://doi.org/10.1109/TCBB.2014.2388227
Article CAS PubMed Google Scholar
Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell Rev 39:261–283. https://doi.org/10.1007/s10462-011-9272-4
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141
Article CAS PubMed Google Scholar
Lee RC, Feinbaum RL, Ambros V (1993) The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. https://doi.org/10.1016/0092-8674(93)90529-Y
Article CAS PubMed Google Scholar
Liang L, Hu W, Zhang Y, Ma K, Gu Y, Tian B, Li H (2021) An algorithm with LightGBM + SVM fusion model for the assessment of dynamic security region. E3S Web Conferences 256(02022). https://doi.org/10.1051/e3sconf/202125602022
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinf 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158
Article CAS PubMed Google Scholar
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. https://doi.org/10.1186/1748-7188-6-26
Lorenz R, Flamm C, Hofacker I, Stadler P (2020) Efficient computation of base-pairing probabilities in multi-strand RNA folding. In: proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies. SCITEPRESS - Science and Technology Publications, pp 23–31
Ma Y, Yu Z, Han G, Li J, Anh V (2018) Identification of pre-microRNAs by characterizing their sequence order evolution information and secondary structure graphs. BMC Bioinf 19:521. https://doi.org/10.1186/s12859-018-2518-2
Article CAS PubMed PubMed Central Google Scholar
Mendes ND, Freitas AT, Sagot M-F (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433. https://doi.org/10.1093/nar/gkp145
Article CAS PubMed PubMed Central Google Scholar
Nasiri H, Alavi SA (2022) A Novel Framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19 cases from chest X-Ray images. Comput Intell Neurosci 2022:1–11. https://doi.org/10.1155/2022/4694567
Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7. https://doi.org/10.3389/fnbot.2013.00021
Nazarov PV, Kreis S (2021) Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput Struct Biotechnol J 19:1154–1162. https://doi.org/10.1016/j.csbj.2021.01.029
Article CAS PubMed PubMed Central Google Scholar
Niaz NU, Shahariar KMN, Patwary MJA (2022) Class Imbalance Problems in Machine Learning: A Review of Methods And Future Challenges. In: Proceedings of the 2nd International Conference on Computing Advancements. ACM, New York, NY, USA, pp 485–490
Nithin C, Mukherjee S, Basak J, Bahadur RP (2022) NCodR: a multi-class support vector machine classification to distinguish non-coding RNAs in viridiplantae. Quant Plant Biology 3:e23.
Comments (0)