Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis

Abuduaini B, Jiyuan Z, Rehati A, Liang Z, Yunlin S (2024) Regulation of Alternative Splicing of Lipid Metabolism Genes in Sepsis-Induced Liver Damage by RNA-Binding Proteins. Inflammation. https://doi.org/10.1007/s10753-024-02017-2

Article  PubMed  Google Scholar 

Atreya MR et al (2023) Prognostic and predictive value of endothelial dysfunction biomarkers in sepsis-associated acute kidney injury: risk-stratified analysis from a prospective observational cohort of pediatric septic shock. Crit Care 27:260. https://doi.org/10.1186/s13054-023-04554-y

Article  PubMed  PubMed Central  Google Scholar 

Balkrishna A et al (2023) Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers, and role of phytoconstituents in its management. Biomed Pharmacother 165:115183. https://doi.org/10.1016/j.biopha.2023.115183

Article  PubMed  CAS  Google Scholar 

Biason-Lauber A, Lang-Muritano M (2022) Estrogens: Two nuclear receptors, multiple possibilities. Mol Cell Endocrinol 554:111710. https://doi.org/10.1016/j.mce.2022.111710

Article  PubMed  CAS  Google Scholar 

Cai L, Rodgers E, Schoenmann N, Raju RP (2023) Advances in rodent experimental models of sepsis. Int J Mol Sci. 24 https://doi.org/10.3390/ijms24119578

Cao X et al (2016) Transcriptomic analysis reveals key early events of narciclasine signaling in Arabidopsis root apex. Plant Cell Rep 35:2381–2401. https://doi.org/10.1007/s00299-016-2042-7

Article  PubMed  CAS  Google Scholar 

Chang YM, Chou YT, Kan WC, Shiao CC (2022) Sepsis and acute kidney injury: a review focusing on the bidirectional interplay. Int J Mol Sci 23 https://doi.org/10.3390/ijms23169159

Chen S, Li B, Chen L, Jiang H (2023) Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J Transl Med 21:380. https://doi.org/10.1186/s12967-023-04233-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Citi S, Fromm M, Furuse M, Gonzalez-Mariscal L, Nusrat A, Tsukita S, Turner JR (2024) A short guide to the tight junction. J Cell Sci 137 https://doi.org/10.1242/jcs.261776

Dagar N, Jadhav HR, Gaikwad AB (2024) Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers. https://doi.org/10.1007/s11030-024-10829-5

Article  PubMed  Google Scholar 

Feng JY et al. (2014) Serum estradiol levels predict survival and acute kidney injury in patients with septic shock–a prospective study PLoS One 9:e97967 doi: 10.1371/journal.pone.0097967.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao P, Wu B, Ding Y, Yin B, Gu H (2023) circEXOC5 promotes acute lung injury through the PTBP1/Skp2/Runx2 axis to activate autophagy. Life Sci Alliance 6. https://doi.org/10.26508/lsa.202201468

Huang H, Tu L (2015) Expression of S100 family proteins in neonatal rats with sepsis and its significance Int J Clin Exp Pathol 8:1631–1639.

Google Scholar 

Kang H, Lee Y, Kim MB, Hu S, Jang H, Park YK, Lee JY (2021) The loss of histone deacetylase 4 in macrophages exacerbates hepatic and adipose tissue inflammation in male but not in female mice with diet-induced non-alcoholic steatohepatitis J Pathol 255:319–329 doi: 10.1002/path.5758.

Article  PubMed  CAS  Google Scholar 

Kingsley MK, Bhat BV, Badhe BA, Dhas BB, Parija SC (2020) Narciclasine Improves Outcome in Sepsis among Neonatal Rats via Inhibition of Calprotectin and Alleviating Inflammatory Responses. Sci Rep 10:2947. https://doi.org/10.1038/s41598-020-59716-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kong Y et al. (2022) Narciclasine inhibits phospholipase A2 and regulates phospholipid metabolism to ameliorate psoriasis-like dermatitis. Front Immunol 13:1094375 https://doi.org/10.3389/fimmu.2022.1094375

Article  PubMed  CAS  Google Scholar 

Legrand M et al (2024) Sepsis-associated acute kidney injury: recent advances in enrichment strategies, sub-phenotyping and clinical trials. Crit Care 28:92. https://doi.org/10.1186/s13054-024-04877-4

Article  PubMed  PubMed Central  Google Scholar 

Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 23:253–259. https://doi.org/10.1097/MOH.0000000000000239

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li H et al (2024) SKLB023 protects against inflammation and apoptosis in sepsis-associated acute kidney injury via the inhibition of toll-like receptor 4 signaling. Int Immunopharmacol 139:112668. https://doi.org/10.1016/j.intimp.2024.112668

Article  PubMed  CAS  Google Scholar 

Liu M et al (2024) Effects and mechanisms of frehmaglutin D and rehmaionoside C improve LPS-induced acute kidney injury through the estrogen receptor-mediated TLR4 pathway in vivo and in vitro. Phytomedicine 123:155218. https://doi.org/10.1016/j.phymed.2023.155218

Article  PubMed  CAS  Google Scholar 

Lu H, Wan Q, Wang H, Na X, Wang X, Bi Y (2012) Oxidative stress and mitochondrial dysfunctions are early events in narciclasine-induced programmed cell death in tobacco Bright Yellow-2 cells. Physiol Plant 144:48–58. https://doi.org/10.1111/j.1399-3054.2011.01521.x

Article  PubMed  CAS  Google Scholar 

Ma HY, Chen S, Du Y (2021) Estrogen and estrogen receptors in kidney diseases. Ren Fail 43:619–642. https://doi.org/10.1080/0886022X.2021.1901739

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Dall’Acqua S, Zengin G (2022) Plants' bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front Pharmacol 13:1046523. https://doi.org/10.3389/fphar.2022.1046523

Molema G, Zijlstra JG, van Meurs M, Kamps J (2022) Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 18:95–112. https://doi.org/10.1038/s41581-021-00489-1

Article  PubMed  CAS  Google Scholar 

Munshi R et al (2011) MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol 22:165–175. https://doi.org/10.1681/ASN.2010060641

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pais T, Jorge S, Lopes JA (2024) Acute kidney injury in sepsis. Int J Mol Sci 25. https://doi.org/10.3390/ijms25115924

Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X (2024) Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 27:623–639. https://doi.org/10.1007/s10456-024-09938-4

Article  PubMed  PubMed Central  Google Scholar 

Piko N, Bevc S, Hojs R, Ekart R (2023) The role of oxidative stress in kidney injury. Antioxidants (Basel) 12. https://doi.org/10.3390/antiox12091772

Plazas E, Avila MM, Munoz DR, Cuca SL (2022) Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 177:106126. https://doi.org/10.1016/j.phrs.2022.106126

Article  PubMed  CAS  Google Scholar 

Qi R, Yang C (2018) Renal Tubular Epithelial Cells: the Neglected Mediator of Tubulointerstitial Fibrosis after Injury. Cell Death Dis 9:1126. https://doi.org/10.1038/s41419-018-1157-x

Article  PubMed  PubMed Central  Google Scholar 

Ren L et al (2022) Estradiol ameliorates acute kidney ischemia-reperfusion injury by inhibiting the TGF-betaRI-SMAD Pathway. Front Immunol 13:822604. https://doi.org/10.3389/fimmu.2022.822604

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ren J et al (2024) Possible pharmacological targets and mechanisms of sivelestat in protecting acute lung injury. Comput Biol Med 170:108080. https://doi.org/10.1016/j.compbiomed.2024.108080

Article  PubMed  CAS  Google Scholar 

Safronova A, Araujo A, Camanzo ET, Moon TJ, Elliott MR, Beiting DP, Yarovinsky F (2019) Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat Immunol 20:64–72. https://doi.org/10.1038/s41590-018-0250-8

Article  PubMed  CAS  Google Scholar 

Shen X, Luo K, Yuan J, Gao J, Cui B, Yu Z, Lu Z (2023) Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression. Acta Pharm Sin B 13:3352–3364.

Comments (0)

No login
gif