Evaluating the effectiveness of Pisolithus tinctorius in enhancing the Eucalyptus’ resistance to salt stress

Agerer R, Rambold G (2004) DEEMY—an information system for characterization and determination of ectomycorrhizae. München, Germany. http://www.deemy.de

Ahmed AG, Selim SM, Zayed MS, Ahmed AS, El-Fattah DA (2022) Isolation and identification of some egyptian ectomycorrhizal sporocarps. Arab Univ J Agric Sci 30(1):55–59. https://doi.org/10.21608/ajs.2022.123225.1470

Article  Google Scholar 

Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycorrhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7(3):273–277. https://doi.org/10.1046/j.1365-294X.1998.00357.x

Article  Google Scholar 

Bai HY, Zhang AY, Mei Y, Xu M, Lu XL, Dai CC, Jia Y (2021a) Effects of ectomycorrhizal fungus bolete identity on the community assemblages of endofungal bacteria. Environ Microbiol Rep 13(6):852–861. https://doi.org/10.1111/1758-2229.13007

Article  PubMed  Google Scholar 

Bai XN, Hao H, Hu ZH, Leng PS (2021b) Ectomycorrhizal inoculation enhances the salt tolerance of Quercus mongolica seedlings. Plants 10(9):1790. https://doi.org/10.3390/plants10091790

Article  PubMed  PubMed Central  Google Scholar 

Balasubramaniam T, Shen G, Esmaeili N, Zhang H (2023) Plants’ response mechanisms to salinity stress. Plants 12(12):2253. https://doi.org/10.3390/plants12122253

Article  PubMed  PubMed Central  Google Scholar 

Baltazar-Bernal O, Spinoso-Castillo JL, Mancilla-Álvarez E, Bello-Bello JJ (2022) Arbuscular mycorrhizal fungi induce tolerance to salinity stress in Taro plantlets (Colocasia esculenta L. Schott) during acclimatization. Plants 11(13):1780. https://doi.org/10.3390/plants11131780

Article  PubMed  PubMed Central  Google Scholar 

Benlaribi M, Monneveux P, Grignac P (1990) Étude des caractères d’enracinement et de leur rôle dans l’adaptation au déficit hydrique chez le blé dur (Triticum durum Desf). Agronomie 10(4):305–322

Article  Google Scholar 

Bonfante P, Venice F (2020) Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol Rev 34(2):100–113. https://doi.org/10.1016/j.fbr.2019.12.003

Article  Google Scholar 

Bradshaw B (2000) Salinity tolerance of selected ectomycorrhizal fungi (Pisolithus tinctorius Pers.) and ectomycorrhizal Eucalypts. Bachelor of Science Honours. Faculty of Communications, Health and Science. Edith Cowan University. p. 107. https://ro.ecu.edu.au/theses_hons/855

Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115. https://doi.org/10.1111/nph.14976

Article  PubMed  Google Scholar 

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture, vol 32. Australian Centre for International Agricultural Research, Canberra, p 374

Google Scholar 

Calvo Polanco M, Zwiazek J, Voicu M (2008a) Responses of ectomycorrhizal American elm (Ulmus americana) seedlings to salinity and soil compaction. Plant Soil 308:189–200. https://doi.org/10.1007/s11104-008-9619-z

Article  Google Scholar 

Calvo Polanco M, Zwiazek J, Jones M, MacKinnon M (2008b) Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees 22:825–834. https://doi.org/10.1007/s00468-008-0243-6

Article  Google Scholar 

Clasen BE, Silveira ADO, Baldoni DB, Montagner DF, Jacques RJS, Antoniolli ZI (2018) Characterization of Ectomycorrhizal species through molecular biology tools and morphotyping. Sci Agric 75(3):246–254. https://doi.org/10.1590/1678-992X-2016-0419

Article  Google Scholar 

Deshaware S, Marathe SJ, Bedade D, Deska J, Shamekh S (2021) Investigation on mycelial growth requirements of Cantharellus cibarius under laboratory conditions. Arch Microbiol 203:1539–1545. https://doi.org/10.1007/s00203-020-02142-0

Article  PubMed  Google Scholar 

Dezsi Ș, Bădărău AS, Bischin C, Vodnar DC, Silaghi-Dumitrescu R, Gheldiu AM, Mocan A, Vlase L (2015) Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) KD Hill & LAS Johnson leaves. Molecules 20(3):4720–4734. https://doi.org/10.3390/molecules20034720

Article  PubMed  PubMed Central  Google Scholar 

Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201(3):951–960. https://doi.org/10.1111/nph.12603

Article  PubMed  Google Scholar 

Gong X, Chao L, Zhou M, Hong M, Luo L, Wang L, Ying W, Jingwei C, Songjie G, Fashui H (2011) Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant Soil 340:443–452. https://doi.org/10.1007/s11104-010-0616-7

Article  Google Scholar 

Guerrero-Galán C, Calvo-Polanco M, Zimmermann SD (2019) Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza 29:291–301. https://doi.org/10.1007/s00572-019-00894-2

Article  PubMed  Google Scholar 

Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp 183–192

Google Scholar 

Krishna Sundari S, Adholeya A (2003) Growth profile of ectomycorrhizal fungal mycelium: emphasis on substrate pH influence. Antonie Van Leeuwenhoek 83:209–214. https://doi.org/10.1023/A:1023307021278

Article  PubMed  Google Scholar 

Kulczyk-Skrzeszewska M, Kieliszewska-Rokicka B (2022) Influence of drought and salt stress on the growth of young Populus nigra ‘Italica’plants and associated mycorrhizal fungi and non-mycorrhizal fungal endophytes. New for 53(4):679–694. https://doi.org/10.1007/s11056-021-09879-6

Article  Google Scholar 

Kumar J, Atri NS (2018) Studies on ectomycorrhiza: an appraisal. Bot Rev 84:108–155. https://doi.org/10.1007/s12229-017-9196-z

Article  Google Scholar 

Leksungnoen N, Andriyas T (2019) Enhancing the salt tolerance of commercial Eucalyptus hybrid seedlings in preparation for reclamation of inland salinity areas. Eur J for Res 138(5):803–812. https://doi.org/10.1007/s10342-019-01204-3

Article  Google Scholar 

Li J, Bao S, Zhang Y, Ma X, Mishra-Knyrim M, Sun J, Sa G, Shen X, Polle A, Chen S (2012) Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under sodium chloride stress. Plant Physiol 159(4):1771–1786. https://doi.org/10.1104/pp.112.195370

Article  PubMed  PubMed Central  Google Scholar 

Li J, Li C, Tsuruta M, Matsushita N, Goto S, Shen Z, Tsugama D, Zhang S, Lian C (2022) Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress. Mycorrhiza 32(3):327–340. https://doi.org/10.1007/s00572-022-01078-1

Article  PubMed  Google Scholar 

Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11(5):591–592. https://doi.org/10.1042/bst0110591

Article  Google Scholar 

Llanes A, Palchetti MV, Vilo C, Ibañez C (2021) Molecular control to salt tolerance mechanisms of woody plants: recent achievements and perspectives. Ann for Sci 78(96):1–19. https://doi.org/10.1007/s13595-021-01107-7

Article  Google Scholar 

Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151(4):1902–1917. https://doi.org/10.1104/pp.109.143735

Article  PubMed  PubMed Central  Google Scholar 

Luo ZB, Li K, Gai Y, Göbel C, Wildhagen H, Jiang X, Feußner I, Rennenberg H, Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exp Bot 72(2):304–311. https://doi.org/10.1016/j.envexpbot.2011.04.008

Article  Google Scholar 

Ma X, Sun M, Sa G, Zhang Y, Li J, Sun J, Shen X, Polle A, Chen S (2014) Ion fluxes in Paxillus involutus-inoculated roots of Populus × canescens under saline stress. Environ Exp Bot 108:99–108. https://doi.org/10.1016/j.envexpbot.2013.11.016

Article  Google Scholar 

Martins A (2008) In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill. In: Siddiqui ZA (ed) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 321–336

Chapter  Google Scholar 

Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. Phytopathol 59:411–417

Google Scholar 

Misbahuzzaman KH, Ingleby KE (2005) A structural study of ectomycorrhizas formed in Seedlings of Eucalyptus camaldulensis Dehnh. Int J Agri Biol 7:400–405

Google Scholar 

Mrak T, Kühdorf K, Grebenc T, Štraus I, Münzenberger B, Kraigher H (2017) Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 27:283–293. https://doi.org/10.1007/s00572-016-0748-6

Article  PubMed  Google Scholar 

Nasir Khan M, Siddiqui MH, Mohammad F, Naeem M, Khan MM (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132. https://doi.org/10.1007/s11738-009-0387-z

Comments (0)

No login
gif