Agerer R, Rambold G (2004) DEEMY—an information system for characterization and determination of ectomycorrhizae. München, Germany. http://www.deemy.de
Ahmed AG, Selim SM, Zayed MS, Ahmed AS, El-Fattah DA (2022) Isolation and identification of some egyptian ectomycorrhizal sporocarps. Arab Univ J Agric Sci 30(1):55–59. https://doi.org/10.21608/ajs.2022.123225.1470
Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycorrhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7(3):273–277. https://doi.org/10.1046/j.1365-294X.1998.00357.x
Bai HY, Zhang AY, Mei Y, Xu M, Lu XL, Dai CC, Jia Y (2021a) Effects of ectomycorrhizal fungus bolete identity on the community assemblages of endofungal bacteria. Environ Microbiol Rep 13(6):852–861. https://doi.org/10.1111/1758-2229.13007
Bai XN, Hao H, Hu ZH, Leng PS (2021b) Ectomycorrhizal inoculation enhances the salt tolerance of Quercus mongolica seedlings. Plants 10(9):1790. https://doi.org/10.3390/plants10091790
Article PubMed PubMed Central Google Scholar
Balasubramaniam T, Shen G, Esmaeili N, Zhang H (2023) Plants’ response mechanisms to salinity stress. Plants 12(12):2253. https://doi.org/10.3390/plants12122253
Article PubMed PubMed Central Google Scholar
Baltazar-Bernal O, Spinoso-Castillo JL, Mancilla-Álvarez E, Bello-Bello JJ (2022) Arbuscular mycorrhizal fungi induce tolerance to salinity stress in Taro plantlets (Colocasia esculenta L. Schott) during acclimatization. Plants 11(13):1780. https://doi.org/10.3390/plants11131780
Article PubMed PubMed Central Google Scholar
Benlaribi M, Monneveux P, Grignac P (1990) Étude des caractères d’enracinement et de leur rôle dans l’adaptation au déficit hydrique chez le blé dur (Triticum durum Desf). Agronomie 10(4):305–322
Bonfante P, Venice F (2020) Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol Rev 34(2):100–113. https://doi.org/10.1016/j.fbr.2019.12.003
Bradshaw B (2000) Salinity tolerance of selected ectomycorrhizal fungi (Pisolithus tinctorius Pers.) and ectomycorrhizal Eucalypts. Bachelor of Science Honours. Faculty of Communications, Health and Science. Edith Cowan University. p. 107. https://ro.ecu.edu.au/theses_hons/855
Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115. https://doi.org/10.1111/nph.14976
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture, vol 32. Australian Centre for International Agricultural Research, Canberra, p 374
Calvo Polanco M, Zwiazek J, Voicu M (2008a) Responses of ectomycorrhizal American elm (Ulmus americana) seedlings to salinity and soil compaction. Plant Soil 308:189–200. https://doi.org/10.1007/s11104-008-9619-z
Calvo Polanco M, Zwiazek J, Jones M, MacKinnon M (2008b) Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees 22:825–834. https://doi.org/10.1007/s00468-008-0243-6
Clasen BE, Silveira ADO, Baldoni DB, Montagner DF, Jacques RJS, Antoniolli ZI (2018) Characterization of Ectomycorrhizal species through molecular biology tools and morphotyping. Sci Agric 75(3):246–254. https://doi.org/10.1590/1678-992X-2016-0419
Deshaware S, Marathe SJ, Bedade D, Deska J, Shamekh S (2021) Investigation on mycelial growth requirements of Cantharellus cibarius under laboratory conditions. Arch Microbiol 203:1539–1545. https://doi.org/10.1007/s00203-020-02142-0
Dezsi Ș, Bădărău AS, Bischin C, Vodnar DC, Silaghi-Dumitrescu R, Gheldiu AM, Mocan A, Vlase L (2015) Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) KD Hill & LAS Johnson leaves. Molecules 20(3):4720–4734. https://doi.org/10.3390/molecules20034720
Article PubMed PubMed Central Google Scholar
Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201(3):951–960. https://doi.org/10.1111/nph.12603
Gong X, Chao L, Zhou M, Hong M, Luo L, Wang L, Ying W, Jingwei C, Songjie G, Fashui H (2011) Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant Soil 340:443–452. https://doi.org/10.1007/s11104-010-0616-7
Guerrero-Galán C, Calvo-Polanco M, Zimmermann SD (2019) Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza 29:291–301. https://doi.org/10.1007/s00572-019-00894-2
Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp 183–192
Krishna Sundari S, Adholeya A (2003) Growth profile of ectomycorrhizal fungal mycelium: emphasis on substrate pH influence. Antonie Van Leeuwenhoek 83:209–214. https://doi.org/10.1023/A:1023307021278
Kulczyk-Skrzeszewska M, Kieliszewska-Rokicka B (2022) Influence of drought and salt stress on the growth of young Populus nigra ‘Italica’plants and associated mycorrhizal fungi and non-mycorrhizal fungal endophytes. New for 53(4):679–694. https://doi.org/10.1007/s11056-021-09879-6
Kumar J, Atri NS (2018) Studies on ectomycorrhiza: an appraisal. Bot Rev 84:108–155. https://doi.org/10.1007/s12229-017-9196-z
Leksungnoen N, Andriyas T (2019) Enhancing the salt tolerance of commercial Eucalyptus hybrid seedlings in preparation for reclamation of inland salinity areas. Eur J for Res 138(5):803–812. https://doi.org/10.1007/s10342-019-01204-3
Li J, Bao S, Zhang Y, Ma X, Mishra-Knyrim M, Sun J, Sa G, Shen X, Polle A, Chen S (2012) Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under sodium chloride stress. Plant Physiol 159(4):1771–1786. https://doi.org/10.1104/pp.112.195370
Article PubMed PubMed Central Google Scholar
Li J, Li C, Tsuruta M, Matsushita N, Goto S, Shen Z, Tsugama D, Zhang S, Lian C (2022) Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress. Mycorrhiza 32(3):327–340. https://doi.org/10.1007/s00572-022-01078-1
Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11(5):591–592. https://doi.org/10.1042/bst0110591
Llanes A, Palchetti MV, Vilo C, Ibañez C (2021) Molecular control to salt tolerance mechanisms of woody plants: recent achievements and perspectives. Ann for Sci 78(96):1–19. https://doi.org/10.1007/s13595-021-01107-7
Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151(4):1902–1917. https://doi.org/10.1104/pp.109.143735
Article PubMed PubMed Central Google Scholar
Luo ZB, Li K, Gai Y, Göbel C, Wildhagen H, Jiang X, Feußner I, Rennenberg H, Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exp Bot 72(2):304–311. https://doi.org/10.1016/j.envexpbot.2011.04.008
Ma X, Sun M, Sa G, Zhang Y, Li J, Sun J, Shen X, Polle A, Chen S (2014) Ion fluxes in Paxillus involutus-inoculated roots of Populus × canescens under saline stress. Environ Exp Bot 108:99–108. https://doi.org/10.1016/j.envexpbot.2013.11.016
Martins A (2008) In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill. In: Siddiqui ZA (ed) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 321–336
Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. Phytopathol 59:411–417
Misbahuzzaman KH, Ingleby KE (2005) A structural study of ectomycorrhizas formed in Seedlings of Eucalyptus camaldulensis Dehnh. Int J Agri Biol 7:400–405
Mrak T, Kühdorf K, Grebenc T, Štraus I, Münzenberger B, Kraigher H (2017) Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 27:283–293. https://doi.org/10.1007/s00572-016-0748-6
Nasir Khan M, Siddiqui MH, Mohammad F, Naeem M, Khan MM (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132. https://doi.org/10.1007/s11738-009-0387-z
Comments (0)