Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK (2011) Proteomics for development of vaccine. J Proteom 74(12):2596–2616. https://doi.org/10.1016/j.jprot.2011.01.019
Alejo A, Matamoros T, Guerra M, Andres G (2018) A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol. https://doi.org/10.1128/JVI.01293-18
Article PubMed PubMed Central Google Scholar
Andres G, Alejo A, Salas J, Salas ML (2002) African swine fever virus polyproteins pp220 and pp62 assemble into the core shell. J Virol 76(24):12473–12482. https://doi.org/10.1128/jvi.76.24.12473-12482.2002
Article PubMed PubMed Central CAS Google Scholar
Argilaguet JM, Perez-Martin E, Nofrarias M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindo-Cardiel I, Lopez-Soria S, Escribano JM, Reche PA, Rodriguez F (2012) DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE 7(9):e40942. https://doi.org/10.1371/journal.pone.0040942
Article PubMed PubMed Central CAS Google Scholar
Bandrick M, Gutierrez AH, Desai P, Rincon G, Martin WD, Terry FE, De Groot AS, Foss DL (2020) T cell epitope content comparison (EpiCC) analysis demonstrates a bivalent PCV2 vaccine has greater T cell epitope overlap with field strains than monovalent PCV2 vaccines. Vet Immunol Immunopathol 223:110034. https://doi.org/10.1016/j.vetimm.2020.110034
Article PubMed CAS Google Scholar
Bappy SS, Sultana S, Adhikari J, Mahmud S, Khan MA, Kibria KMK, Rahman MM, Shibly AZ (2021) Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach. J Biomol Struct Dyn 39(4):1139–1154. https://doi.org/10.1080/07391102.2020.1726815
Article PubMed CAS Google Scholar
Baratelli M, Morgan S, Hemmink JD, Reid E, Carr BV, Lefevre E, Montaner-Tarbes S, Charleston B, Fraile L, Tchilian E, Montoya M (2020) Identification of a newly conserved SLA-II Epitope in a structural protein of Swine Influenza Virus. Front Immunol 11:2083. https://doi.org/10.3389/fimmu.2020.02083
Article PubMed PubMed Central CAS Google Scholar
Bhasin M, Raghava GP (2004) Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13(3):596–607. https://doi.org/10.1110/ps.03373104
Article PubMed PubMed Central CAS Google Scholar
Blome S, Franzke K, Beer M (2020) African swine fever - A review of current knowledge. Virus Res 287:198099. https://doi.org/10.1016/j.virusres.2020.198099
Article PubMed CAS Google Scholar
Bosch-Camos L, Lopez E, Rodriguez F (2020) African swine fever vaccines: a promising work still in progress. Porcine Health Manag 6:17. https://doi.org/10.1186/s40813-020-00154-2
Article PubMed PubMed Central Google Scholar
Bosch-Camos L, Lopez E, Navas MJ, Pina-Pedrero S, Accensi F, Correa-Fiz F, Park C, Carrascal M, Dominguez J, Salas ML, Nikolin V, Collado J, Rodriguez F (2021) Identification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines (Basel). https://doi.org/10.3390/vaccines9010029
Burmakina G, Malogolovkin A, Tulman ER, Xu W, Delhon G, Kolbasov D, Rock DL (2019) Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. J Gen Virol 100(2):259–265. https://doi.org/10.1099/jgv.0.001195
Article PubMed CAS Google Scholar
Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Kesmir C, Peters B (2013) Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 9(10):e1003266. https://doi.org/10.1371/journal.pcbi.1003266
Article PubMed PubMed Central Google Scholar
Clem AS (2011) Fundamentals of vaccine immunology. J Glob Infect Dis 3(1):73–78. https://doi.org/10.4103/0974-777X.77299
Article PubMed PubMed Central CAS Google Scholar
Cobbold C, Wileman T (1998) The major structural protein of African swine fever virus, p73, is packaged into large structures, indicative of viral capsid or matrix precursors, on the endoplasmic reticulum. J Virol 72(6):5215–5223. https://doi.org/10.1128/JVI.72.6.5215-5223.1998
Article PubMed PubMed Central CAS Google Scholar
Dorigatti E, Schubert B (2020) Graph-theoretical formulation of the generalized epitope-based vaccine design problem. PLoS Comput Biol 16(10):e1008237. https://doi.org/10.1371/journal.pcbi.1008237
Article PubMed PubMed Central CAS Google Scholar
Fan S, Wang Y, Wang X, Huang L, Zhang Y, Liu X, Zhu W (2018) Analysis of the affinity of influenza a virus protein epitopes for swine MHC I by a modified in vitro refolding method indicated cross-reactivity between swine and human MHC I specificities. Immunogenetics 70(10):671–680. https://doi.org/10.1007/s00251-018-1070-6
Article PubMed CAS Google Scholar
Gao Z, Shao JJ, Zhang GL, Ge SD, Chang YY, Xiao L, Chang HY (2021) Development of an indirect ELISA to specifically detect antibodies against African swine fever virus: bioinformatics approaches. Virol J 18(1):97. https://doi.org/10.1186/s12985-021-01568-2
Article PubMed PubMed Central CAS Google Scholar
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn211
Article PubMed PubMed Central Google Scholar
Gaudreault NN, Richt JA (2019) Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines (Basel). https://doi.org/10.3390/vaccines7020056
Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH, Saalmuller A (2015) Phenotypic and functional differentiation of porcine alphabeta T cells: current knowledge and available tools. Mol Immunol 66(1):3–13. https://doi.org/10.1016/j.molimm.2014.10.025
Article PubMed CAS Google Scholar
Gomez-Puertas P, Rodriguez F, Oviedo JM, Ramiro-Ibanez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM (1996) Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol 70(8):5689–5694. https://doi.org/10.1128/JVI.70.8.5689-5694.1996
Article PubMed PubMed Central CAS Google Scholar
Gomez-Puertas P, Rodriguez F, Oviedo JM, Brun A, Alonso C, Escribano JM (1998) The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243(2):461–471. https://doi.org/10.1006/viro.1998.9068
Article PubMed CAS Google Scholar
Gul I, Hassan A, Muneeb JM, Akram T, Haq E, Shah RA, Ganai NA, Ahmad SM, Chikan NA, Shabir N (2022) A multiepitope vaccine candidate against infectious bursal disease virus using immunoinformatics-based reverse vaccinology approach. Front Vet Sci 9:1116400. https://doi.org/10.3389/fvets.2022.1116400
Guo F, Tang Y, Zhang W, Yuan H, Xiang J, Teng W, Lei A, Li R, Dai G (2022) DnaJ, a promising vaccine candidate against Ureaplasma urealyticum infection. Appl Microbiol Biotechnol 106(22):7643–7659. https://doi.org/10.1007/s00253-022-12230-4
Article PubMed PubMed Central CAS Google Scholar
Gupta S, Ansari HR, Gautam A, Open Source Drug Discovery C, Raghava GP (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8:27. https://doi.org/10.1186/1745-6150-8-27
Comments (0)