Aksu Demirezen D, Yılmaz Ş, Demirezen Yılmaz D, Yıldız Y (2022) Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. Inter J Mater Res 113(10):849–861. https://doi.org/10.1515/ijmr-2022-0037
Al-Karagoly H, Rhyaf A, Naji H, Albukhaty S, AlMalki F, Alyamani A, Albaqami J, Aloufi S (2022) Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Pro Synth 11(1):254–265. https://doi.org/10.1515/gps-2022-0026
Ali K, Javed Y, Jamil Y (2017) Size and shape control synthesis of Iron Oxide–Based nanoparticles: current status and future possibility. In: Sharma S (ed) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2-2
Amer M, Awwad A (2021) Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Intern 7(1):1–8. https://ssrn.com/abstract=3693721
AOAC Association of Official Analytical Chemists, Official Method of Analysis 2000, 17th (Ed), Arlington Virginia, USA
Archana V, Joseph PJ, Kalainathan S (2021) Simple one-step leaf extract-assisted preparation of α-Fe2O3 nanoparticles, physicochemical properties, and its sunlight-driven photocatalytic activity on methylene blue dye degradation. J Nano 2021:1–25. https://doi.org/10.1155/2021/8570351
Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nano 19(1):1–26. https://doi.org/10.1186/s12951-021-00834-3
Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105. https://doi.org/10.1021/acsnano.5b03247
Article CAS PubMed Google Scholar
Coppo E, Marchese A (2014) Antibacterial activity of polyphenols. Curr Pharm Biotechnol 15(4):380–390. https://doi.org/10.2174/138920101504140825121142
Article CAS PubMed Google Scholar
Emmanuel SA, Olajide OO, Abubakar S, Idowu ID, Orishadipe AT, Thomas SA (2014) Phytochemical and antimicrobial studies of methanol, ethyl acetate, and aqueous extracts of Moringa oleifera seeds. Amer J Ethnomed 1(5):346–354
Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nano Res Lett 9:1–17
Kamran U, Bhatti HN, Iqbal M, Nazir A (2019) Green synthesis of metal nanoparticles and their applications in different fields: a review. Z für Phys Chem 233(9):1325–1349. https://doi.org/10.1515/zpch-2018-1238
Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Mol Biomol Spectrosc 79(3):594–598. https://doi.org/10.1016/j.saa.2011.03.040
Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nano Bio 6(1):1–24
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ (2007) Nanoparticle silverreleased into water from commercially available sock fabrics. Nano T Biol Med 3:95–101
Kouhbanani MA, Beheshtkhoo N, Taghizadeh S, Amani AM, Alimardani V (2019) One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Adv Nat Sci: Nanosci Nanotech 10(1):015007. https://doi.org/10.1088/2043-6254/aafe74
Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933. https://doi.org/10.1021/es800408u
Article CAS PubMed PubMed Central Google Scholar
Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964. https://doi.org/10.3390/molecules18055954
Article PubMed PubMed Central Google Scholar
Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Kalinina NO (2014a) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30(20):5982–5988. https://doi.org/10.1021/la5011924
Article CAS PubMed Google Scholar
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014b) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 61(20):35–44
Masoumi S, Esmaeili A (2020) In vivo, in vitro, and antibacterial activity of Fe 3 O 4@ RIF-BUP-CMCs-modified by fatty acids nanoparticles to remove drug liver toxins. App Nanosci 104149–4160. https://doi.org/10.1007/s13204-020-01545-1
Mihir H, Siddhivinayak B (2015) Calcination and microwave assisted Biological synthesis of Iron Oxide nanoparticles and comparative efficiency studies for domestic Wastewater Treatment. Int Res J Environ Sci 4(6):28–36
Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Bio Adv 31(2):346–356
Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int J En Sci Technol 2(8)
Moustafa MH, shams Al Din R (2017) Green synthesis and characterization of iron-oxide nanoparticles by guava aqueous leaves extract for doxorubicin drug loading. J Biosci Appl Res 3(4):177–180. https://doi.org/10.21608/jbaar.2017.126138
Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. Wiley., Inc ISBN:9780470405888https://doi.org/10.1002/9780470405888
Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract J Chem 1–7. https://doi.org/10.1155/2015/912342
Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27(4):649–660
Article CAS PubMed Google Scholar
Niraimathee VA, Subha V, Ravindran RE, Renganathan S (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Env Sus Devt 15(3):227–240
Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271. https://doi.org/10.1021/la103190n
Article CAS PubMed Google Scholar
Pallela PN, Ummey S, Ruddaraju LK, Gadi S, Cherukuri CS, Barla S, Pammi SV (2019) Antibacterial efficacy of green synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon 5(11):e02765
Article PubMed PubMed Central Google Scholar
Patel P, Patel N, Patel D, Desai S, Meshram D (2014) Phytochemical analysis and antifungal activity of Moringa oleifera. Inter J Phar Pharm Scie 6(5):144–147
Reddy DG, Noorjahan M, Ratnamala A, Haseena M, Manjunatha H, Chandra Babu Naidu K (2020) Meteoric synthesis of luminescent Fe2O3 nanoparticles: a potential cytotoxic, antioxidant & bactericidal agent. Inte J Appl Cer T17(6):2768–2778
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GE (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308
Article CAS PubMed PubMed Central Google Scholar
Shammout M, Awwad A (2021) A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Intern 7(1): 71–78., Available at SSRN: https://ssrn.com/abstract=3865991
Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. John Sons pp18–. ISBN 978-0-470-09307-8
Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Inte J Nanomed 277–283. https://doi.org/10.2147/IJN.S9220
Uchenna O, Uruakpa PC, Uche E (2018) Impact of telecommuting on employees performance: a Focus on Telecommunication out-fits in Owerri, Imo State. J Eco Manage Sci 1(3):54–61
Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Bio 10(36):7092
Veeramanikandan V, Madhu GC, Pavithra V, Jaianand K, Balaji P (2017) Green synthesis, characterization of iron oxide nanoparticles using Leucas aspera leaf extract and evaluation of antibacterial and antioxidant studies. Inter J Agrie Innovations Res 6(02):242–250
Vitta Y, Figueroa M, Calderon M, Ciangherotti C (2020) Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta sm and evaluation of antioxidant and antimicrobial activity. Mater Sci Energy Techno 397–103. https://doi.org/10.1016/j.mset.2019.10.014
Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 6326982012. https://doi.org/10.1155/2012/632698
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP (2023) Iron Oxide nanoparticles: Green Synthesis and their antimicrobial activity. Nanomaterials 13(22):2919.
Comments (0)