Bäumler W. Chemical hazard of tattoo colorants. Presse Med. 2020;49(4):104046. https://doi.org/10.1016/j.lpm.2020.104046.
Giulbudagian M, Battisini B, Bäumler W, Blass Rico AM, Bocca B, Brungs C, Famele M, Foerster M, Gutsche B, Houben V, Hauri U, Karpienko K, Karst U, Katz LM, Kluger N, Serup J, Schreiver I, Schubert S, van der Bent SAS, Wolf C, Luch A, Laux P. Lessons learned in a decade: medical-toxicological view of tattooing. J Eur Acad Dermatol Venereol. 2024;38(10):1926–38. https://doi.org/10.1111/jdv.20072.
Daftary K, Liszewski W. Tattoo-Related Allergic Contact Dermatitis. Curr Dermatol Rep. 2022;11(4):202–8. https://doi.org/10.1007/s13671-022-00371-8.
Huisman S, van der Bent SAS, Maijer KI, Tio DCKS, Rustemeyer T. Cutaneous non-allergic complications in tattoos: an overview of the literature. Presse Med. 2020;49(4):104049. https://doi.org/10.1016/j.lpm.2020.104049.
Kurz B, Schreiver I, Siewert K, Haslboeck B, Weiss KT, Hannemann J, Berner B, von Eichbaum MI, Berneburg M, Bäumler W. Investigation of adverse reactions in tattooed skin through histological and chemical analysis. Dermatology. 2023;239(5):782–93. https://doi.org/10.1159/000530949.
Article PubMed CAS Google Scholar
Schubert S, Kluger N, Schreiver I. Hypersensitivity to permanent tattoos: literature summary and comprehensive review of patch tested tattoo patients 1997–2022. Contact Derm. 2023;88(5):331–50. https://doi.org/10.1111/cod.14291.
de Cuyper C. Tattoo allergy. Can we identify the allergen? Presse Med. 2020;49(4):104047. https://doi.org/10.1016/j.lpm.2020.104047
van der Bent SAS, Rauwerdink D, Oyen EMM, Maijer KI, Rustemeyer T, Wolkerstorfer A. Complications of tattoos and permanent makeup: overview and analysis of 308 cases. J Cosmet Dermatol. 2021;20(11):3630–41. https://doi.org/10.1111/jocd.14498.
Schubert S, Wolf C, Schreiver I, Siewert K, Karst U. Tattoo allergy—diagnosis on a circuitous route? Allergo J Int. 2023;33(2):60–6. https://doi.org/10.1007/s40629-023-00280-7.
Serup J, Hutton CK. Patch test study of 90 patients with tattoo reactions: negative outcome of allergy patch test to baseline batteries and culprit inks suggests allergen(s) are generated in the skin through haptenization. Contact Derm. 2014;71(5):255–63. https://doi.org/10.1111/cod.12271.
Serup J, Hutton Carlsen K, Dommershausen N, Sepehri M, Hesse B, Seim C, Luch A, Schreiver I. Identification of pigments related to allergic tattoo reactions in 104 human skin biopsies. Contact Derm. 2020;82(2):73–82. https://doi.org/10.1111/cod.13423.
Brungs C, Schmid R, Wolf C, Berg T, Korf A, Heuckeroth S, Hayen H, van der Bent SAS, Maijer K, Rustemeyer T, Karst U. Tattoo pigment identification in inks and skin biopsies of adverse reactions by complementary elemental and molecular bioimaging with mass spectral library matching. Anal Chem. 2022;94(8):3581–9. https://doi.org/10.1021/acs.analchem.1c04922.
Article PubMed CAS Google Scholar
Hunger K, Schmidt MU. Industrial organic pigments: production, crystal structures, properties. Applications: Wiley-VCH Verlag GmbH; 2019.
Aptula AO, Roberts DW, Pease CK. Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles. Contact Derm. 2007;56(1):54–6. https://doi.org/10.1111/j.1600-0536.2007.00944.x.
Divkovic M, Pease CK, Gerberick GF, Basketter DA. Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Derm. 2005;53(4):189–200. https://doi.org/10.1111/j.0105-1873.2005.00683.x.
Smith Pease CK, Basketter DA, Patlewicz GY. Contact allergy: the role of skin chemistry and metabolism. Clin Exp Dermatol. 2003;28(2):177–83. https://doi.org/10.1046/j.1365-2230.2003.01239.x.
Article PubMed CAS Google Scholar
Fraser TR, Ross KE, Alexander U, Lenehan CE. Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: a systematic review. J Expo Sci Environ Epidemiol. 2022;32(3):343–55. https://doi.org/10.1038/s41370-021-00364-y.
Pyo SM, Maibach HI. Skin metabolism: relevance of skin enzymes for rational drug design. Skin Pharmacol Physiol. 2019;32(5):283–94. https://doi.org/10.1159/000501732.
Article PubMed CAS Google Scholar
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today. 2019;24(9):1899–910. https://doi.org/10.1016/j.drudis.2019.06.002.
Article PubMed CAS Google Scholar
Cui Y, Churchwell MI, Couch LH, Doerge DR, Howard PC. Metabolism of pigment yellow 74 by rat and human microsomal proteins. Drug Metab Dispos. 2005;33(10):1459–65. https://doi.org/10.1124/dmd.104.003285.
Article PubMed CAS Google Scholar
Cambiaso-Daniel J, Luze H, Meschnark S, Fink J, Schreiver I, Rappl T, Goessler W, Kotzbeck P, Kamolz L-P. Tattoo pigment biokinetics in vivo in a 28-day porcine model: elements undergo fast distribution to lymph nodes and reach steady state after 7 days. Dermatology. 2024;240(2):304–11. https://doi.org/10.1159/000536126.
Article PubMed CAS Google Scholar
Sepehri M, Sejersen T, Qvortrup K, Lerche CM, Serup J. Tattoo pigments are observed in the kupffer cells of the liver indicating blood-borne distribution of tattoo ink. Dermatology. 2017;233(1):86–93. https://doi.org/10.1159/000468149.
Dominguez E, Alegre V, García-Melgares ML, Laguna C, Martín B, Sánchez JL, Oliver V. Tattoo pigment in two lymph nodes in a patient with melanoma. J Eur Acad Dermatol Venereol. 2008;22(1):101–2. https://doi.org/10.1111/j.1468-3083.2007.02112.x.
Article PubMed CAS Google Scholar
Engel E, Vasold R, Santarelli F, Maisch T, Gopee NV, Howard PC, Landthaler M, Bäumler W. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments–a first quantification in vivo using a mouse model. Exp Dermatol. 2010;19(1):54–60. https://doi.org/10.1111/j.1600-0625.2009.00925.x.
Article PubMed CAS Google Scholar
Jurva U, Wikström HV, Weidolf L, Bruins AP. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom. 2003;17(8):800–10. https://doi.org/10.1002/rcm.978.
Article PubMed CAS Google Scholar
Johansson T, Weidolf L, Jurva U. Mimicry of phase I drug metabolism–novel methods for metabolite characterization and synthesis. Rapid Commun Mass Spectrom. 2007;21(14):2323–31. https://doi.org/10.1002/rcm.3077.
Article PubMed CAS Google Scholar
Bussy U, Boujtita M. Advances in the electrochemical simulation of oxidation reactions mediated by cytochrome p450. Chem Res Toxicol. 2014;27(10):1652–68. https://doi.org/10.1021/tx5001943.
Article PubMed CAS Google Scholar
Karst U. Electrochemistry/mass spectrometry (EC/MS)–a new tool to study drug metabolism and reaction mechanisms. Angew Chem Int Ed Engl. 2004;43(19):2476–8. https://doi.org/10.1002/anie.200301763.
Article PubMed CAS Google Scholar
Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry–current state and future perspectives. J Chromatogr A. 2012;1259:16–49. https://doi.org/10.1016/j.chroma.2012.05.066.
Article PubMed CAS Google Scholar
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins. Rapid Commun Mass Spectrom. 2012;26(12):1415–25. https://doi.org/10.1002/rcm.6247.
Article PubMed CAS Google Scholar
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/mass spectrometry as a tool in the investigation of the potent skin sensitizer p-phenylenediamine and its reactivity toward nucleophiles. Rapid Commun Mass Spectrom. 2012;26(12):1453–64. https://doi.org/10.1002/rcm.6249.
Comments (0)