Pucci, C., Martinelli, C., and Ciofani, G., Innovative approaches for cancer treatment: Current perspectives and new challenges, Ecancermedicalscience, 2019, vol. 13, p. 961. https://doi.org/10.3332/ECANCER.2019.961
Article PubMed PubMed Central Google Scholar
Charmsaz, S., Collins, D.M., Perry, A.S., and Prencipe, M., Novel strategies for cancer treatment: Highlights from the 55th IACR Annual Conference, Cancers, 2019, vol. 11, p. 1125. https://doi.org/10.3390/CANCERS11081125
Article CAS PubMed PubMed Central Google Scholar
Debela, D.T., Muzazu, S.G., Heraro, K.D., Nda-lama, M.T., Mesele, B.W., et al., New approaches and procedures for cancer treatment: Current perspectives, SAGE Open Med., 2021, vol. 9, p. 205031212110343. https://doi.org/10.1177/20503121211034366
Yildizhan, H., Barkan, N.P., Turan, S.K., Demiralp, Ö., Demiralp, F.D.Ö., et al., Treatment strategies in cancer from past to present, in Drug Targeting and Stimuli Sensitive Drug Delivery Systems, Amsterdam: Elsevier, 2018, pp. 1–37. https://doi.org/10.1016/B978-0-12-813689-8.00001-X
Carvalho, C., Santos, R., Cardoso, S., Correia, S., Oliveira, P., et al., Doxorubicin: The good, the bad and the ugly effect, Curr. Med. Chem., 2009, vol. 16, pp. 3267–3285. https://doi.org/10.2174/092986709788803312
Article CAS PubMed Google Scholar
Alam Khan, S. and Jawaid Akhtar, M., Structural modification and strategies for the enhanced doxorubicin drug delivery, Bioorg. Chem., 2022, vol. 120, p. 105599. https://doi.org/10.1016/J.BIOORG.2022.105599
Article CAS PubMed Google Scholar
Christidi, E. and Brunham, L.R., Regulated cell death pathways in doxorubicin-induced cardiotoxicity, Cell Death Dis., 2021, vol. 12, p. 339. https://doi.org/10.1038/s41419-021-03614-x
Article CAS PubMed PubMed Central Google Scholar
Sritharan, S. and Sivalingam, N., A comprehensive review on time-tested anticancer drug doxorubicin, Life Sci., 2021, vol. 278, p. 119527. https://doi.org/10.1016/j.lfs.2021.119527
Article CAS PubMed Google Scholar
Popova, V., Poletaeva, Y., Chubarov, A., Pyshnyi, D., and Dmitrienko, E., Doxorubicin-loaded silica nanocomposites for cancer treatment, Coatings, 2023, vol. 13, p. 324. https://doi.org/10.3390/COATINGS13020324
Kovrigina, E., Chubarov, A., and Dmitrienko, E., High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy, Magnetochemistry, 2022, vol. 8, p. 54. https://doi.org/10.3390/MAGNETOCHEMISTRY8-050054/S1
Vargason, A.M., Anselmo, A.C., and Mitragotri, S., The evolution of commercial drug delivery technologies, Nat. Biomed. Eng., 2021, vol. 5, pp. 951–967. https://doi.org/10.1038/s41551-021-00698-w
Chubarov, A., Spitsyna, A., Krumkacheva, O., Mitin, D., Suvorov, D., et al., Reversible dimerization of human serum albumin, Molecules, 2021, vol. 26, p. 108. https://doi.org/10.3390/MOLECULES26010108
Zeeshan, F., Madheswaran, T., Panneerselvam, J., Taliyan, R., and Kesharwani, P., Human serum albumin as multifunctional nanocarrier for cancer therapy, J. Pharm. Sci., 2021, vol. 110, pp. 3111–3117. https://doi.org/10.1016/J.XPHS.2021.05.001
Article CAS PubMed Google Scholar
Tao, C., Chuah, Y.J., Xu, C., and Wang, D.-A., Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications, J. Mater. Chem. B, 2019, vol. 7, pp. 357–367. https://doi.org/10.1039/C8TB02477D
Article CAS PubMed Google Scholar
Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., et al., Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment, Chin. Chem. Lett., 2023, vol. 34, no. 2, p. 107518. https://doi.org/10.1016/J.CCLET.2022.05.032
Baler, K., Michael, R., Szleifer, I., and Ameer, G.A., Albumin hydrogels formed by electrostatically triggered self-assembly and their drug delivery capability, Biomacromolecules, 2014, vol. 15, pp. 3625–3633. https://doi.org/10.1021/bm500883h
Article CAS PubMed PubMed Central Google Scholar
Arabi, S.H., Aghelnejad, B., Schwieger, C., Meister, A., Kerth, A., et al., Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties, Biomater. Sci., 2018, vol. 6, pp. 478–492. https://doi.org/10.1039/c7bm00820a
Article CAS PubMed Google Scholar
Gong, J., Yan, J., Forscher, C., and Hendifar, A., Aldoxorubicin: A tumor-targeted doxorubicin conjugate for relapsed or refractory soft tissue sarcomas, Drug Des., Dev. Ther., 2018, vol. 12, pp. 777–786. https://doi.org/10.2147/DDDT.S140638
Tayyab, S. and Feroz, S.R., Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle, Adv. Protein Chem. Struct. Biol., 2021, vol. 123, pp. 193–218. https://doi.org/10.1016/bs.apcsb.2020.08.003
Article CAS PubMed Google Scholar
Zhang, A. and Jia, L., Spectroscopic study of the interaction between folic acid and bovine serum albumin, Spectrosc. Lett., 2006, vol. 39, pp. 285–298. https://doi.org/10.1080/00387010600779112
Bourassa, P., Hasni, I., and Tajmir-Riahi, H.A., Folic acid complexes with human and bovine serum albumins, Food Chem., 2011, vol. 129, pp. 1148–1155. https://doi.org/10.1016/j.foodchem.2011.05.094
Article CAS PubMed Google Scholar
Jha, N.S. and Kishore, N., Thermodynamic studies on the interaction of folic acid with bovine serum albumin, J. Chem. Thermodyn., 2011, vol. 43, pp. 814–821. https://doi.org/10.1016/J.JCT.2010.12.024
Chilom, C.G., Bacalum, M., Stanescu, M.M., and Florescu, M., Insight into the interaction of human serum albumin with folic acid: A biophysical study, Spectrochim. Acta, Part A, 2018, vol. 204, pp. 648–656. https://doi.org/10.1016/J.SAA.2018.06.093
Agudelo, D., Bourassa, P., Bruneau, J., Bérubé, G., Asselin, É., et al., Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins, PLoS One, 2012, vol. 7, p. e43814. https://doi.org/10.1371/journal.pone.0043814
Article CAS PubMed PubMed Central Google Scholar
Gun’ko, V.M., Turov, V.V., Krupska, T.V., and Tsapko, M.D., Interactions of human serum albumin with doxorubicin in different media, Chem. Phys., 2017, vols. 483–484, pp. 26–34. https://doi.org/10.1016/J.CHEMPHYS.2016.11.007
Song, M., Fu, W., Liu, Y., Yao, H., Zheng, K., et al., Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study, J. Mol. Liq., 2021, vol. 333, p. 115949. https://doi.org/10.1016/j.molliq.2021.115949
Chubarov, A.S., Zakharova, O.D., Koval, O.A., Romaschenko, A.V., Akulov, A.E., et al., Design of protein homocystamides with enhanced tumor uptake properties for 19F magnetic resonance imaging, Bioorg. Med. Chem., 2015, vol. 23, pp. 6943–6954. https://doi.org/10.1016/j.bmc.2015.09.043
Article CAS PubMed Google Scholar
Amiri, M., Jankeje, K., and Albani, J.R., Characterization of human serum albumin forms with pH. Fluorescence lifetime studies, J. Pharm. Biomed. Anal., 2010, vol. 51, pp. 1097–1102. https://doi.org/10.1016/j.jpba.2009.11.011
Article CAS PubMed Google Scholar
Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer, 2006, 3rd ed.
Ross, P.D. and Subramanian, S., Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 1981, vol. 20, pp. 3096–3102. https://doi.org/10.1021/bi00514a017
Article CAS PubMed Google Scholar
Younis, I.R., Stamatakis, M.K., Callery, P.S., and Meyer-Stout, P.J., Influence of PH on the dissolution of folic acids supplements, Int. J. Pharm., 2009, vol. 367, pp. 97–102. https://doi.org/10.1016/j.ijpharm.2008.09.028
Comments (0)