Investigating Non-Covalent Interactions of Human Serum Albumin with Doxorubicin and Folic Acid

Pucci, C., Martinelli, C., and Ciofani, G., Innovative approaches for cancer treatment: Current perspectives and new challenges, Ecancermedicalscience, 2019, vol. 13, p. 961. https://doi.org/10.3332/ECANCER.2019.961

Article  PubMed  PubMed Central  Google Scholar 

Charmsaz, S., Collins, D.M., Perry, A.S., and Prencipe, M., Novel strategies for cancer treatment: Highlights from the 55th IACR Annual Conference, Cancers, 2019, vol. 11, p. 1125. https://doi.org/10.3390/CANCERS11081125

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debela, D.T., Muzazu, S.G., Heraro, K.D., Nda-lama, M.T., Mesele, B.W., et al., New approaches and procedures for cancer treatment: Current perspectives, SAGE Open Med., 2021, vol. 9, p. 205031212110343. https://doi.org/10.1177/20503121211034366

Article  Google Scholar 

Yildizhan, H., Barkan, N.P., Turan, S.K., Demiralp, Ö., Demiralp, F.D.Ö., et al., Treatment strategies in cancer from past to present, in Drug Targeting and Stimuli Sensitive Drug Delivery Systems, Amsterdam: Elsevier, 2018, pp. 1–37. https://doi.org/10.1016/B978-0-12-813689-8.00001-X

Carvalho, C., Santos, R., Cardoso, S., Correia, S., Oliveira, P., et al., Doxorubicin: The good, the bad and the ugly effect, Curr. Med. Chem., 2009, vol. 16, pp. 3267–3285. https://doi.org/10.2174/092986709788803312

Article  CAS  PubMed  Google Scholar 

Alam Khan, S. and Jawaid Akhtar, M., Structural modification and strategies for the enhanced doxorubicin drug delivery, Bioorg. Chem., 2022, vol. 120, p. 105599. https://doi.org/10.1016/J.BIOORG.2022.105599

Article  CAS  PubMed  Google Scholar 

Christidi, E. and Brunham, L.R., Regulated cell death pathways in doxorubicin-induced cardiotoxicity, Cell Death Dis., 2021, vol. 12, p. 339. https://doi.org/10.1038/s41419-021-03614-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sritharan, S. and Sivalingam, N., A comprehensive review on time-tested anticancer drug doxorubicin, Life Sci., 2021, vol. 278, p. 119527. https://doi.org/10.1016/j.lfs.2021.119527

Article  CAS  PubMed  Google Scholar 

Popova, V., Poletaeva, Y., Chubarov, A., Pyshnyi, D., and Dmitrienko, E., Doxorubicin-loaded silica nanocomposites for cancer treatment, Coatings, 2023, vol. 13, p. 324. https://doi.org/10.3390/COATINGS13020324

Article  CAS  Google Scholar 

Kovrigina, E., Chubarov, A., and Dmitrienko, E., High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy, Magnetochemistry, 2022, vol. 8, p. 54. https://doi.org/10.3390/MAGNETOCHEMISTRY8-050054/S1

Article  CAS  Google Scholar 

Vargason, A.M., Anselmo, A.C., and Mitragotri, S., The evolution of commercial drug delivery technologies, Nat. Biomed. Eng., 2021, vol. 5, pp. 951–967. https://doi.org/10.1038/s41551-021-00698-w

Article  PubMed  Google Scholar 

Chubarov, A., Spitsyna, A., Krumkacheva, O., Mitin, D., Suvorov, D., et al., Reversible dimerization of human serum albumin, Molecules, 2021, vol. 26, p. 108. https://doi.org/10.3390/MOLECULES26010108

Article  CAS  Google Scholar 

Zeeshan, F., Madheswaran, T., Panneerselvam, J., Taliyan, R., and Kesharwani, P., Human serum albumin as multifunctional nanocarrier for cancer therapy, J. Pharm. Sci., 2021, vol. 110, pp. 3111–3117. https://doi.org/10.1016/J.XPHS.2021.05.001

Article  CAS  PubMed  Google Scholar 

Tao, C., Chuah, Y.J., Xu, C., and Wang, D.-A., Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications, J. Mater. Chem. B, 2019, vol. 7, pp. 357–367. https://doi.org/10.1039/C8TB02477D

Article  CAS  PubMed  Google Scholar 

Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., et al., Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment, Chin. Chem. Lett., 2023, vol. 34, no. 2, p. 107518. https://doi.org/10.1016/J.CCLET.2022.05.032

Article  CAS  Google Scholar 

Baler, K., Michael, R., Szleifer, I., and Ameer, G.A., Albumin hydrogels formed by electrostatically triggered self-assembly and their drug delivery capability, Biomacromolecules, 2014, vol. 15, pp. 3625–3633. https://doi.org/10.1021/bm500883h

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arabi, S.H., Aghelnejad, B., Schwieger, C., Meister, A., Kerth, A., et al., Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties, Biomater. Sci., 2018, vol. 6, pp. 478–492. https://doi.org/10.1039/c7bm00820a

Article  CAS  PubMed  Google Scholar 

Gong, J., Yan, J., Forscher, C., and Hendifar, A., Aldoxorubicin: A tumor-targeted doxorubicin conjugate for relapsed or refractory soft tissue sarcomas, Drug Des., Dev. Ther., 2018, vol. 12, pp. 777–786. https://doi.org/10.2147/DDDT.S140638

Article  CAS  Google Scholar 

Tayyab, S. and Feroz, S.R., Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle, Adv. Protein Chem. Struct. Biol., 2021, vol. 123, pp. 193–218. https://doi.org/10.1016/bs.apcsb.2020.08.003

Article  CAS  PubMed  Google Scholar 

Zhang, A. and Jia, L., Spectroscopic study of the interaction between folic acid and bovine serum albumin, Spectrosc. Lett., 2006, vol. 39, pp. 285–298. https://doi.org/10.1080/00387010600779112

Article  CAS  Google Scholar 

Bourassa, P., Hasni, I., and Tajmir-Riahi, H.A., Folic acid complexes with human and bovine serum albumins, Food Chem., 2011, vol. 129, pp. 1148–1155. https://doi.org/10.1016/j.foodchem.2011.05.094

Article  CAS  PubMed  Google Scholar 

Jha, N.S. and Kishore, N., Thermodynamic studies on the interaction of folic acid with bovine serum albumin, J. Chem. Thermodyn., 2011, vol. 43, pp. 814–821. https://doi.org/10.1016/J.JCT.2010.12.024

Article  CAS  Google Scholar 

Chilom, C.G., Bacalum, M., Stanescu, M.M., and Florescu, M., Insight into the interaction of human serum albumin with folic acid: A biophysical study, Spectrochim. Acta, Part A, 2018, vol. 204, pp. 648–656. https://doi.org/10.1016/J.SAA.2018.06.093

Article  CAS  Google Scholar 

Agudelo, D., Bourassa, P., Bruneau, J., Bérubé, G., Asselin, É., et al., Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins, PLoS One, 2012, vol. 7, p. e43814. https://doi.org/10.1371/journal.pone.0043814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gun’ko, V.M., Turov, V.V., Krupska, T.V., and Tsapko, M.D., Interactions of human serum albumin with doxorubicin in different media, Chem. Phys., 2017, vols. 483–484, pp. 26–34. https://doi.org/10.1016/J.CHEMPHYS.2016.11.007

Article  Google Scholar 

Song, M., Fu, W., Liu, Y., Yao, H., Zheng, K., et al., Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study, J. Mol. Liq., 2021, vol. 333, p. 115949. https://doi.org/10.1016/j.molliq.2021.115949

Article  CAS  Google Scholar 

Chubarov, A.S., Zakharova, O.D., Koval, O.A., Romaschenko, A.V., Akulov, A.E., et al., Design of protein homocystamides with enhanced tumor uptake properties for 19F magnetic resonance imaging, Bioorg. Med. Chem., 2015, vol. 23, pp. 6943–6954. https://doi.org/10.1016/j.bmc.2015.09.043

Article  CAS  PubMed  Google Scholar 

Amiri, M., Jankeje, K., and Albani, J.R., Characterization of human serum albumin forms with pH. Fluorescence lifetime studies, J. Pharm. Biomed. Anal., 2010, vol. 51, pp. 1097–1102. https://doi.org/10.1016/j.jpba.2009.11.011

Article  CAS  PubMed  Google Scholar 

Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer, 2006, 3rd ed.

Ross, P.D. and Subramanian, S., Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 1981, vol. 20, pp. 3096–3102. https://doi.org/10.1021/bi00514a017

Article  CAS  PubMed  Google Scholar 

Younis, I.R., Stamatakis, M.K., Callery, P.S., and Meyer-Stout, P.J., Influence of PH on the dissolution of folic acids supplements, Int. J. Pharm., 2009, vol. 367, pp. 97–102. https://doi.org/10.1016/j.ijpharm.2008.09.028

Article  CAS 

Comments (0)

No login
gif