Gutierrez, C. and Schiff, R., HER2: Biology, detection, and clinical implications, Arch. Pathol. Lab. Med., 2011, vol. 135, pp. 55–62. https://doi.org/10.5858/2010-0454-rar.1
Article PubMed PubMed Central Google Scholar
Li, F., Meng, G., Tan, B., Chen, Z., Ji, Q., Wang, X., Liu, C., Niu, S., Li, Y., and Liu, Y., Relationship between HER2 expression and tumor interstitial angiogenesis in primary gastric cancer and its effect on prognosis, Pathol., Res. Pract., 2021, vol. 217, p. 153280. https://doi.org/10.1016/j.prp.2020.153280
Article CAS PubMed Google Scholar
Press, M.F., Cordon-Cardo, C., and Slamon, D.J., Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues, Oncogene, 1990, vol. 5, pp. 953–962.
Jeyakumar, A. and Younis, T., Trastuzumab for HER2-positive metastatic breast cancer: Clinical and economic considerations, Clin. Med. Insights: Oncol., 2012, vol. 6, pp. 179–187. https://doi.org/10.4137/cmo.s6460
Article CAS PubMed Google Scholar
Godoy-Ortiz, A., Sanchez-Muñoz, A., Chica Parrado, M.R., Álvarez, M., Ribelles, N., Rueda Dominguez, A., and Alba, E., Deciphering HER2 breast cancer disease: Biological and clinical implications, Front. Oncol., 2019, vol. 9, p. 1124. https://doi.org/10.3389/fonc.2019.01124
Article PubMed PubMed Central Google Scholar
Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., Tsurutani, J., Ueno, N.T., Prat, A., Chae, Y.S., et al., Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer, N. Engl. J. Med., 2022, vol. 387, pp. 9–20. https://doi.org/10.1056/nejmoa2203690
Article CAS PubMed PubMed Central Google Scholar
Chen, R., Qi, Y., Huang, Y., Liu, W., Yang, R., Zhao, X., Wu, Y., Li, Q., Wang, Z., Sun, X., et al., Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population, Breast Cancer Res. Treat., 2023, vol. 197, pp. 189–200. https://doi.org/10.1007/s10549-022-06781-3
Article CAS PubMed Google Scholar
Terrenato, I., Pennacchia, I., Buglioni, S., Mottolese, M., and Arena, V., HER2 status determination: Analyzing the problems to find the solutions, Medicine (Baltimore, MD, U. S.), 2015, vol. 94, p. e645. https://doi.org/10.1097/md.0000000000000645
Wang, S.E. and Lin, R.J., MicroRNA and HER2-overexpressing cancer, MicroRNA, 2013, vol. 2, pp. 137–147. https://doi.org/10.2174/22115366113029990011
Article PubMed PubMed Central Google Scholar
Eichner, L.J., Perry, M.C., Dufour, C.R., Bertos, N., Park, M., St-Pierre, J., and Giguère, V., miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway, Cell Metab., 2010, vol. 12, pp. 352–361. https://doi.org/10.1016/j.cmet.2010.09.002
Article CAS PubMed Google Scholar
Adachi, R., Horiuchi, S., Sakurazawa, Y., Hasegawa, T., Sato, K., and Sakamaki, T., ErbB2 down-regulates microRNA-205 in breast cancer, Biochem. Biophys. Res. Commun., 2011, vol. 411, pp. 804–808. https://doi.org/10.1016/j.bbrc.2011.07.033
Article CAS PubMed Google Scholar
Huang, T.H., Wu, F., Loeb, G.B., Hsu, R., Heidersbach, A., Brincat, A., Horiuchi, D., Lebbink, R.J., Mo, Y.Y., Goga, A., et al., Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion, J. Biol. Chem., 2009, vol. 284, pp. 18515–18524. https://doi.org/10.1074/jbc.m109.006676
Article CAS PubMed PubMed Central Google Scholar
Kalinina, T.S., Kononchuk, V.V., Yakovleva, A.K., Alekseenok, E.Y., Sidorov, S.V., and Gulyaeva, L.F., Association between lymph node status and expression levels of androgen receptor, miR-185, miR-205, and miR-21 in breast cancer subtypes, Int. J. Breast Cancer, 2020, vol. 2020, p. 3259393. https://doi.org/10.1155/2020/3259393
Article CAS PubMed PubMed Central Google Scholar
Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al., Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res., 2005, vol. 33, p. e179. https://doi.org/10.1093/nar/gni178
Article CAS PubMed PubMed Central Google Scholar
Tilli, T.M., Castro, C.d.S., Tuszynski, J.A., and Carels, N., A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases, BMC Genomics, 2016, vol. 17, p. 639. https://doi.org/10.1186/s12864-016-2946-1
Article CAS PubMed PubMed Central Google Scholar
Tokar, T., Pastrello, C., Rossos, A.E.M., Abovsky, M., Hauschild, A.C., Tsay, M., Lu, R., and Jurisica, I., mirDIP 4.1-integrative database of human microRNA target predictions, Nucleic Acids Res., 2018, vol. 46, pp. D360–D370. https://doi.org/10.1093/nar/gkx1144
Article CAS PubMed Google Scholar
Landis, J.R. and Koch, G.G., The measurement of observer agreement for categorical data, Biometrics, 1977, vol. 33, pp. 159–174.
Article CAS PubMed Google Scholar
Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 2007, vol. 133, pp. 647–658. https://doi.org/10.1053/j.gastro.2007.05.022
Article CAS PubMed Google Scholar
Lei, L., Huang, Y., and Gong, W., miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN, Oncol. Rep., 2013, vol. 30, pp. 2897–2902. https://doi.org/10.3892/or.2013.2755
Article CAS PubMed Google Scholar
Motsch, N., Alles, J., Imig, J., Zhu, J., Barth, S., Reineke, T., Tinguely, M., Cogliatti, S., Dueck, A., Meister, G., et al., MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing, PLoS One, 2012, vol. 7, p. e42193. https://doi.org/10.1371/journal.pone.0042193
Article CAS PubMed PubMed Central Google Scholar
Sawant, D.V., Wu, H., Kaplan, M.H., and Dent, A.L., The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway, Mol. Immunol., 2013, vol. 54, pp. 435–442. https://doi.org/10.1016/j.molimm.2013.01.006
Article CAS PubMed PubMed Central Google Scholar
Robertson, S., Rönnlund, C., de Boniface, J., and Hartman, J., Re-testing of predictive biomarkers on surgical breast cancer specimens is clinically relevant, Breast Cancer Res. Treat., 2019, vol. 174, pp. 795–805. https://doi.org/10.1007/s10549-018-05119-2
Article CAS PubMed PubMed Central Google Scholar
Dekker, T.J., Smit, V.T., Hooijer, G.K., Van de Vijver, M.J., Mesker, W.E., Tollenaar, R.A., Nortier, J.W., and Kroep, J.R., Reliability of core needle biopsy for determining ER and HER2 status in breast cancer, Ann. Oncol., 2013, vol. 24, pp. 931–937. https://doi.org/10.1093/annonc/mds599
Article CAS PubMed Google Scholar
You, K., Park, S., Ryu, J.M., Kim, I., Lee, S.K., Yu, J., Kim, S.W., Nam, S.J., and Lee, J.E., Comparison of core needle biopsy and surgical specimens in determining intrinsic biological subtypes of breast cancer with immunohistochemistry, J. Breast Cancer, 2017, vol. 20, pp. 297–303. https://doi.org/10.4048/jbc.2017.20.3.297
Article PubMed PubMed Central Google Scholar
Lu, Y., Zhu, S., Tong, Y., Fei, X., Jiang, W., Shen, K., and Chen, X., HER2-low status is not accurate in breast cancer core needle biopsy samples: An analysis of 5610 consecutive patients, Cancers, 2022, vol. 14, p. 6200. https://doi.org/10.3390/cancers14246200
Article CAS PubMed PubMed Central Google Scholar
Kalinina, T., Kononchuk, V., Alekseenok, E., Abdullin, G., Sidorov, S., Ovchinnikov, V., and Gulyaeva, L., Associations between the levels of estradiol-, progesterone-, and testosterone-sensitive miRNAs and main clinicopathologic features of breast cancer, J. Pers. Med., 2021, vol. 12, p. 4. https://doi.org/10.3390/jpm12010004
Comments (0)