Expression of miR-21, miR-378a, miR-205, and Their Targets in ER-Positive Breast Tumors with Different HER2 Protein Levels

Gutierrez, C. and Schiff, R., HER2: Biology, detection, and clinical implications, Arch. Pathol. Lab. Med., 2011, vol. 135, pp. 55–62. https://doi.org/10.5858/2010-0454-rar.1

Article  PubMed  PubMed Central  Google Scholar 

Li, F., Meng, G., Tan, B., Chen, Z., Ji, Q., Wang, X., Liu, C., Niu, S., Li, Y., and Liu, Y., Relationship between HER2 expression and tumor interstitial angiogenesis in primary gastric cancer and its effect on prognosis, Pathol., Res. Pract., 2021, vol. 217, p. 153280. https://doi.org/10.1016/j.prp.2020.153280

Article  CAS  PubMed  Google Scholar 

Press, M.F., Cordon-Cardo, C., and Slamon, D.J., Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues, Oncogene, 1990, vol. 5, pp. 953–962.

CAS  PubMed  Google Scholar 

Jeyakumar, A. and Younis, T., Trastuzumab for HER2-positive metastatic breast cancer: Clinical and economic considerations, Clin. Med. Insights: Oncol., 2012, vol. 6, pp. 179–187. https://doi.org/10.4137/cmo.s6460

Article  CAS  PubMed  Google Scholar 

Godoy-Ortiz, A., Sanchez-Muñoz, A., Chica Parrado, M.R., Álvarez, M., Ribelles, N., Rueda Dominguez, A., and Alba, E., Deciphering HER2 breast cancer disease: Biological and clinical implications, Front. Oncol., 2019, vol. 9, p. 1124. https://doi.org/10.3389/fonc.2019.01124

Article  PubMed  PubMed Central  Google Scholar 

Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., Tsurutani, J., Ueno, N.T., Prat, A., Chae, Y.S., et al., Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer, N. Engl. J. Med., 2022, vol. 387, pp. 9–20. https://doi.org/10.1056/nejmoa2203690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, R., Qi, Y., Huang, Y., Liu, W., Yang, R., Zhao, X., Wu, Y., Li, Q., Wang, Z., Sun, X., et al., Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population, Breast Cancer Res. Treat., 2023, vol. 197, pp. 189–200. https://doi.org/10.1007/s10549-022-06781-3

Article  CAS  PubMed  Google Scholar 

Terrenato, I., Pennacchia, I., Buglioni, S., Mottolese, M., and Arena, V., HER2 status determination: Analyzing the problems to find the solutions, Medicine (Baltimore, MD, U. S.), 2015, vol. 94, p. e645. https://doi.org/10.1097/md.0000000000000645

Article  CAS  Google Scholar 

Wang, S.E. and Lin, R.J., MicroRNA and HER2-overexpressing cancer, MicroRNA, 2013, vol. 2, pp. 137–147. https://doi.org/10.2174/22115366113029990011

Article  PubMed  PubMed Central  Google Scholar 

Eichner, L.J., Perry, M.C., Dufour, C.R., Bertos, N., Park, M., St-Pierre, J., and Giguère, V., miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway, Cell Metab., 2010, vol. 12, pp. 352–361. https://doi.org/10.1016/j.cmet.2010.09.002

Article  CAS  PubMed  Google Scholar 

Adachi, R., Horiuchi, S., Sakurazawa, Y., Hasegawa, T., Sato, K., and Sakamaki, T., ErbB2 down-regulates microRNA-205 in breast cancer, Biochem. Biophys. Res. Commun., 2011, vol. 411, pp. 804–808. https://doi.org/10.1016/j.bbrc.2011.07.033

Article  CAS  PubMed  Google Scholar 

Huang, T.H., Wu, F., Loeb, G.B., Hsu, R., Heidersbach, A., Brincat, A., Horiuchi, D., Lebbink, R.J., Mo, Y.Y., Goga, A., et al., Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion, J. Biol. Chem., 2009, vol. 284, pp. 18515–18524. https://doi.org/10.1074/jbc.m109.006676

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalinina, T.S., Kononchuk, V.V., Yakovleva, A.K., Alekseenok, E.Y., Sidorov, S.V., and Gulyaeva, L.F., Association between lymph node status and expression levels of androgen receptor, miR-185, miR-205, and miR-21 in breast cancer subtypes, Int. J. Breast Cancer, 2020, vol. 2020, p. 3259393. https://doi.org/10.1155/2020/3259393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al., Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res., 2005, vol. 33, p. e179. https://doi.org/10.1093/nar/gni178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tilli, T.M., Castro, C.d.S., Tuszynski, J.A., and Carels, N., A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases, BMC Genomics, 2016, vol. 17, p. 639. https://doi.org/10.1186/s12864-016-2946-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tokar, T., Pastrello, C., Rossos, A.E.M., Abovsky, M., Hauschild, A.C., Tsay, M., Lu, R., and Jurisica, I., mirDIP 4.1-integrative database of human microRNA target predictions, Nucleic Acids Res., 2018, vol. 46, pp. D360–D370. https://doi.org/10.1093/nar/gkx1144

Article  CAS  PubMed  Google Scholar 

Landis, J.R. and Koch, G.G., The measurement of observer agreement for categorical data, Biometrics, 1977, vol. 33, pp. 159–174.

Article  CAS  PubMed  Google Scholar 

Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 2007, vol. 133, pp. 647–658. https://doi.org/10.1053/j.gastro.2007.05.022

Article  CAS  PubMed  Google Scholar 

Lei, L., Huang, Y., and Gong, W., miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN, Oncol. Rep., 2013, vol. 30, pp. 2897–2902. https://doi.org/10.3892/or.2013.2755

Article  CAS  PubMed  Google Scholar 

Motsch, N., Alles, J., Imig, J., Zhu, J., Barth, S., Reineke, T., Tinguely, M., Cogliatti, S., Dueck, A., Meister, G., et al., MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing, PLoS One, 2012, vol. 7, p. e42193. https://doi.org/10.1371/journal.pone.0042193

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawant, D.V., Wu, H., Kaplan, M.H., and Dent, A.L., The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway, Mol. Immunol., 2013, vol. 54, pp. 435–442. https://doi.org/10.1016/j.molimm.2013.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson, S., Rönnlund, C., de Boniface, J., and Hartman, J., Re-testing of predictive biomarkers on surgical breast cancer specimens is clinically relevant, Breast Cancer Res. Treat., 2019, vol. 174, pp. 795–805. https://doi.org/10.1007/s10549-018-05119-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dekker, T.J., Smit, V.T., Hooijer, G.K., Van de Vijver, M.J., Mesker, W.E., Tollenaar, R.A., Nortier, J.W., and Kroep, J.R., Reliability of core needle biopsy for determining ER and HER2 status in breast cancer, Ann. Oncol., 2013, vol. 24, pp. 931–937. https://doi.org/10.1093/annonc/mds599

Article  CAS  PubMed  Google Scholar 

You, K., Park, S., Ryu, J.M., Kim, I., Lee, S.K., Yu, J., Kim, S.W., Nam, S.J., and Lee, J.E., Comparison of core needle biopsy and surgical specimens in determining intrinsic biological subtypes of breast cancer with immunohistochemistry, J. Breast Cancer, 2017, vol. 20, pp. 297–303. https://doi.org/10.4048/jbc.2017.20.3.297

Article  PubMed  PubMed Central  Google Scholar 

Lu, Y., Zhu, S., Tong, Y., Fei, X., Jiang, W., Shen, K., and Chen, X., HER2-low status is not accurate in breast cancer core needle biopsy samples: An analysis of 5610 consecutive patients, Cancers, 2022, vol. 14, p. 6200. https://doi.org/10.3390/cancers14246200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalinina, T., Kononchuk, V., Alekseenok, E., Abdullin, G., Sidorov, S., Ovchinnikov, V., and Gulyaeva, L., Associations between the levels of estradiol-, progesterone-, and testosterone-sensitive miRNAs and main clinicopathologic features of breast cancer, J. Pers. Med., 2021, vol. 12, p. 4. https://doi.org/10.3390/jpm12010004

Article  PubMed  PubMed Central 

Comments (0)

No login
gif