Levels of IgG to Food Antigens in Practically Healthy People and with Metabolic Syndrome

Grundy, S.M., Cleeman, J. I., Daniels, S.R., et al., Diagnosis and management of the metabolic syndrome, Circulation, 2005, vol. 112, no. 17, p. 2735. https://doi.org/10.1161/CIRCULATIONAHA.105.169404

Article  PubMed  Google Scholar 

Regitz-Zagrosek, V., Lehmkuhl, E., and Weic-kert, M.O., Gender differences in the metabolic syndrome and their role for cardiovascular disease, Clin. Res. Cardiol., 2006, vol. 95, no. 3, p. 136. https://doi.org/10.1007/s00392-006-0351-5

Article  CAS  PubMed  Google Scholar 

Beigh, S.H. and Jain, S., Prevalence of metabolic syndrome and gender differences, Bioinformation, 2012, vol. 8, no. 13, p. 613. https://doi.org/10.6026/97320630008613

Article  PubMed  PubMed Central  Google Scholar 

Zeng, K., Wang, S., Zhang, L., et al., Gender differences in prevalence and associated factors of metabolic syndrome in first-treatment and drug-naïve schizophrenia patients, Ann. Gen. Psychiatry, 2023, vol. 22, no. 1, p. 25. https://doi.org/10.1186/s12991-023-00455-0

Article  PubMed  PubMed Central  Google Scholar 

Ramezankhani, A., Azizi, F., and Hadaegh, F., Gender differences in changes in metabolic syndrome status and its components and risk of cardiovascular disease: A longitudinal cohort study, Cardiovasc. Diabetol., 2022, vol. 21, no. 1, p. 227. https://doi.org/10.1186/s12933-022-01665-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasturi, S.S., Tannir, J., and Brannigan, R.E., The metabolic syndrome and male infertility, J. Androl., 2008, vol. 29, no. 3, p. 251. https://doi.org/10.2164/jandrol.107.003731

Article  CAS  PubMed  Google Scholar 

Cunningham, G.R., Testosterone and metabolic syndrome, Asian J. Androl., 2015, vol. 17, no. 2, p. 192. https://doi.org/10.4103/1008-682X.148068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta, P.K. and Griendling, K.K., Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system, Am. J. Physiol.: Cell Physiol., 2007, vol. 292, p. C82. https://doi.org/10.1152/ajpcell.00287.2006

Article  CAS  PubMed  Google Scholar 

Fahed, G., Aoun, L., Zerdan, M.B., et al., Metabolic syndrome: Updates on pathophysiology and management in 2021, Int. J. Mol. Sci., 2022, vol. 23, no. 2, p. 786. https://doi.org/10.3390/ijms23020786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leviatan, S., Vogl, T., Klompus, S., Kalka, I.N., Weinberger, A., and Segal, E., Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals, Immunity, 2022, vol. 55, no. 12, p. 2454–2469.e6 https://doi.org/10.1016/j.immuni.2022.11.004

Article  CAS  PubMed  Google Scholar 

Zeng, Q., Dong, S.-Y., Wu, L.-X., Li, H., Sun, Z.-J., Li, J.-B., Jiang, H.-X., Chen, Z.-H., Wang, Q.-B., and Chen, W.-W., Variable food-specific IgG antibody levels in healthy and symptomatic Chinese adults, PLoS One, 2013, vol. 8, no. 1, p. e53612. https://doi.org/10.1371/journal.pone.0053612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izard, J., Carson, W., Baumert, J., and Clarke, J., Inflammatory diseases and resections of the digestive tract influence the risk of circulating food-specific-IgG, Curr. Dev. Nutr., 2022, vol. 6, no. 1, p. 370. https://doi.org/10.1093/cdn/nzac054.025

Article  PubMed Central  Google Scholar 

Bentz, S., Hausmann, M., Piberger, H., et al., Clinical relevance of IgG antibodies against food antigens in Crohn’s disease: A double-blind cross-over diet intervention study, Digestion, 2010, vol. 81, no. 4, p. 252. https://doi.org/10.1159/000264649

Article  CAS  PubMed  Google Scholar 

Keramitsoglou, T., Oikonomopoulou, D., Peristeri, P., Tsekoura, C., and Varla-Leftherioti, M., Food specific IgG antibodies in women with fertility problems, J. Reprod. Immunol., 2023, vol. 158, p. 103614. https://doi.org/10.1016/j.jri.2022.103614

Article  Google Scholar 

Novikov, P.S., Cherevko, N.A., and Kondakov, S.E., Specific hypersensitivity to food antigens is a trigger for the development of anemia and hypothyroidism, Ross. Immunol. Zh., 2017, vol. 11, no. 20, pp. 740–742.

Google Scholar 

Kohno, T., Kobashiri, Y., Sugie, Y., Takai, S., Watabe, K., Kaino, Y., and Kida, K., Antibodies to food antigens in Japanese patients with type 1 diabetes mellitus, Diabetes Res. Clin. Pract., 2002, vol. 55, no. 1, pp. 1–9. https://doi.org/10.1016/s0168-8227(01)00250-9

Article  CAS  PubMed  Google Scholar 

Kaličanin, D., Brčić, L., Barić, A., Zlodre, S., Barbalić, M., Lovrić, T.V., Punda, A., and Perica, V.B., Evaluation of correlations between food-specific antibodies and clinical aspects of Hashimoto’s thyroiditis, J. Am. Coll. Nutr., 2019, vol. 38, no. 3, pp. 259–266. https://doi.org/10.1080/07315724.2018.1503103

Article  CAS  PubMed  Google Scholar 

Cherevko, N.A., Skirnevskaya, A.V., Rozensh-tein, M.Y., et al., Features of specific hypersensitivity to food antigens of milk and cereal clusters in children with autism spectrum disorder, Byull. Sib. Med., 2018, vol. 17, no. 1, p. 159. https://doi.org/10.20538/1682-0363-2018-1-159-166

Article  Google Scholar 

Wu, M., Wang, X., Sun, L., et al., Effects of food-specic IgG on health outcomes of asymptomatic physical examination population, Res. Square, 2021. https://doi.org/10.21203/rs.3.rs-958853/v1

Tao, R., Fu, Z., and Xiao, L., Chronic food antigen-specific IgG-mediated hypersensitivity reaction as a risk factor for adolescent depressive disorder, Genomics, Proteomics Bioinf., 2019, vol. 17, no. 2, p. 183. https://doi.org/10.1016/j.gpb.2019.05.002

Article  CAS  Google Scholar 

Wang, G., Ren, J., Li, G., Hu, Q., Gu, G., Ren, H., Hong, Z., and Li, J., The utility of food antigen test in the diagnosis of Crohn’s disease and remission maintenance after exclusive enteral nutrition, Clin. Res. Hepatol. Gastroenterol., 2018, vol. 42, no. 2, pp. 145–152. https://doi.org/10.1016/j.clinre.2017.09.002

Article  PubMed  Google Scholar 

Ansarimoghaddam, A., Adineh, H.A., Zareban, I., Iranpour, S., et al., Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies, Diabetes Metab. Syndr.: Clin. Res. Rev., 2018, vol. 12, no. 2, p. 195. https://doi.org/10.1016/j.dsx.2017.11.004

Article  Google Scholar 

Postoeva, A.V., Dvoryashina, I.V., Kudryavtsev, A.V., and Postoev, V.A., Prevalence of metabolic phenotypes in residents of the Arctic zone of the Russian Federation (using the example of Arkhangelsk), Ozhirenie Metab., 2023, vol. 20, no. 1, pp. 34–42. https://doi.org/10.14341/omet12926

IDF Consensus Worldwide Definition of the Metabolic Syndrome, 2006. https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html.

Fathi Dizaji, B., The investigations of genetic determ-inants of the metabolic syndrome, Diabetes Metab. Syndr., 2018, vol. 12, p. 783–789. https://doi.org/10.1016/j.dsx.2018.04.009

Matsuzawa, Y., Funahashi, T., and Nakamura, T., The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism, J. Atheroscler. Thromb., 2011, vol. 18, no. 8, p. 629. https://doi.org/10.5551/jat.7922

Article  CAS  PubMed  Google Scholar 

Pekgor, S., Duran, C., Berberoglu, U. and Eryilmaz, M.A., The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients, Metab. Syndr. Relat. Disord., 2019, vol. 17, no. 5, p. 296. https://doi.org/10.1089/met.2019.0005

Article  CAS  PubMed  Google Scholar 

Zhang, H.H., Halbleib, M., Ahmad, F., et al., Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP, Diabetes, 2002, vol. 51, p. 2929. https://doi.org/10.2337/diabetes.51.10.2929

Article  CAS  PubMed  Google Scholar 

Wassmann, S., Stumpf, M., Strehlow, K., et al., Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor, Circ. Res., 2004, vol. 94, p. 534. https://doi.org/10.1161/01.RES.0000115557.25127.8D

Article  CAS  PubMed  Google Scholar 

Dedov, I.I., Shestakova, M.V., Vikulova, O.K., et al., Epidemiological characteristics of diabetes mellitus in the Russian Federation: Clinical and statistical analysis according to the diabetes mellitus register as of January 1, 2021, Sakh. Diabet, 2021, vol. 24b, no. 3, pp. 404–221. https://doi.org/10.14341/DM12759

Article  Google Scholar 

Hardy, O.T., Kim, A. Ciccarelli, C., et al., Increased Toll-like receptor (TLR) mRNA expression in monocytes is a feature of metabolic syndrome in adolescents, Pediatr. Obes., 2013, vol. 8, p. e19. https://doi.org/10.1111/j.2047-6310.2012.00098.x

Dasu, M.R., Devaraj, S., Zhao, L., et al., High glucose induces toll-like receptor expression in human monocytes: mechanism of activation, Diabetes, 2008, vol. 57, p. 3090. https://doi.org/10.2337/db08-0564

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif