Grundy, S.M., Cleeman, J. I., Daniels, S.R., et al., Diagnosis and management of the metabolic syndrome, Circulation, 2005, vol. 112, no. 17, p. 2735. https://doi.org/10.1161/CIRCULATIONAHA.105.169404
Regitz-Zagrosek, V., Lehmkuhl, E., and Weic-kert, M.O., Gender differences in the metabolic syndrome and their role for cardiovascular disease, Clin. Res. Cardiol., 2006, vol. 95, no. 3, p. 136. https://doi.org/10.1007/s00392-006-0351-5
Article CAS PubMed Google Scholar
Beigh, S.H. and Jain, S., Prevalence of metabolic syndrome and gender differences, Bioinformation, 2012, vol. 8, no. 13, p. 613. https://doi.org/10.6026/97320630008613
Article PubMed PubMed Central Google Scholar
Zeng, K., Wang, S., Zhang, L., et al., Gender differences in prevalence and associated factors of metabolic syndrome in first-treatment and drug-naïve schizophrenia patients, Ann. Gen. Psychiatry, 2023, vol. 22, no. 1, p. 25. https://doi.org/10.1186/s12991-023-00455-0
Article PubMed PubMed Central Google Scholar
Ramezankhani, A., Azizi, F., and Hadaegh, F., Gender differences in changes in metabolic syndrome status and its components and risk of cardiovascular disease: A longitudinal cohort study, Cardiovasc. Diabetol., 2022, vol. 21, no. 1, p. 227. https://doi.org/10.1186/s12933-022-01665-8
Article CAS PubMed PubMed Central Google Scholar
Kasturi, S.S., Tannir, J., and Brannigan, R.E., The metabolic syndrome and male infertility, J. Androl., 2008, vol. 29, no. 3, p. 251. https://doi.org/10.2164/jandrol.107.003731
Article CAS PubMed Google Scholar
Cunningham, G.R., Testosterone and metabolic syndrome, Asian J. Androl., 2015, vol. 17, no. 2, p. 192. https://doi.org/10.4103/1008-682X.148068
Article CAS PubMed PubMed Central Google Scholar
Mehta, P.K. and Griendling, K.K., Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system, Am. J. Physiol.: Cell Physiol., 2007, vol. 292, p. C82. https://doi.org/10.1152/ajpcell.00287.2006
Article CAS PubMed Google Scholar
Fahed, G., Aoun, L., Zerdan, M.B., et al., Metabolic syndrome: Updates on pathophysiology and management in 2021, Int. J. Mol. Sci., 2022, vol. 23, no. 2, p. 786. https://doi.org/10.3390/ijms23020786
Article CAS PubMed PubMed Central Google Scholar
Leviatan, S., Vogl, T., Klompus, S., Kalka, I.N., Weinberger, A., and Segal, E., Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals, Immunity, 2022, vol. 55, no. 12, p. 2454–2469.e6 https://doi.org/10.1016/j.immuni.2022.11.004
Article CAS PubMed Google Scholar
Zeng, Q., Dong, S.-Y., Wu, L.-X., Li, H., Sun, Z.-J., Li, J.-B., Jiang, H.-X., Chen, Z.-H., Wang, Q.-B., and Chen, W.-W., Variable food-specific IgG antibody levels in healthy and symptomatic Chinese adults, PLoS One, 2013, vol. 8, no. 1, p. e53612. https://doi.org/10.1371/journal.pone.0053612
Article CAS PubMed PubMed Central Google Scholar
Izard, J., Carson, W., Baumert, J., and Clarke, J., Inflammatory diseases and resections of the digestive tract influence the risk of circulating food-specific-IgG, Curr. Dev. Nutr., 2022, vol. 6, no. 1, p. 370. https://doi.org/10.1093/cdn/nzac054.025
Article PubMed Central Google Scholar
Bentz, S., Hausmann, M., Piberger, H., et al., Clinical relevance of IgG antibodies against food antigens in Crohn’s disease: A double-blind cross-over diet intervention study, Digestion, 2010, vol. 81, no. 4, p. 252. https://doi.org/10.1159/000264649
Article CAS PubMed Google Scholar
Keramitsoglou, T., Oikonomopoulou, D., Peristeri, P., Tsekoura, C., and Varla-Leftherioti, M., Food specific IgG antibodies in women with fertility problems, J. Reprod. Immunol., 2023, vol. 158, p. 103614. https://doi.org/10.1016/j.jri.2022.103614
Novikov, P.S., Cherevko, N.A., and Kondakov, S.E., Specific hypersensitivity to food antigens is a trigger for the development of anemia and hypothyroidism, Ross. Immunol. Zh., 2017, vol. 11, no. 20, pp. 740–742.
Kohno, T., Kobashiri, Y., Sugie, Y., Takai, S., Watabe, K., Kaino, Y., and Kida, K., Antibodies to food antigens in Japanese patients with type 1 diabetes mellitus, Diabetes Res. Clin. Pract., 2002, vol. 55, no. 1, pp. 1–9. https://doi.org/10.1016/s0168-8227(01)00250-9
Article CAS PubMed Google Scholar
Kaličanin, D., Brčić, L., Barić, A., Zlodre, S., Barbalić, M., Lovrić, T.V., Punda, A., and Perica, V.B., Evaluation of correlations between food-specific antibodies and clinical aspects of Hashimoto’s thyroiditis, J. Am. Coll. Nutr., 2019, vol. 38, no. 3, pp. 259–266. https://doi.org/10.1080/07315724.2018.1503103
Article CAS PubMed Google Scholar
Cherevko, N.A., Skirnevskaya, A.V., Rozensh-tein, M.Y., et al., Features of specific hypersensitivity to food antigens of milk and cereal clusters in children with autism spectrum disorder, Byull. Sib. Med., 2018, vol. 17, no. 1, p. 159. https://doi.org/10.20538/1682-0363-2018-1-159-166
Wu, M., Wang, X., Sun, L., et al., Effects of food-specic IgG on health outcomes of asymptomatic physical examination population, Res. Square, 2021. https://doi.org/10.21203/rs.3.rs-958853/v1
Tao, R., Fu, Z., and Xiao, L., Chronic food antigen-specific IgG-mediated hypersensitivity reaction as a risk factor for adolescent depressive disorder, Genomics, Proteomics Bioinf., 2019, vol. 17, no. 2, p. 183. https://doi.org/10.1016/j.gpb.2019.05.002
Wang, G., Ren, J., Li, G., Hu, Q., Gu, G., Ren, H., Hong, Z., and Li, J., The utility of food antigen test in the diagnosis of Crohn’s disease and remission maintenance after exclusive enteral nutrition, Clin. Res. Hepatol. Gastroenterol., 2018, vol. 42, no. 2, pp. 145–152. https://doi.org/10.1016/j.clinre.2017.09.002
Ansarimoghaddam, A., Adineh, H.A., Zareban, I., Iranpour, S., et al., Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies, Diabetes Metab. Syndr.: Clin. Res. Rev., 2018, vol. 12, no. 2, p. 195. https://doi.org/10.1016/j.dsx.2017.11.004
Postoeva, A.V., Dvoryashina, I.V., Kudryavtsev, A.V., and Postoev, V.A., Prevalence of metabolic phenotypes in residents of the Arctic zone of the Russian Federation (using the example of Arkhangelsk), Ozhirenie Metab., 2023, vol. 20, no. 1, pp. 34–42. https://doi.org/10.14341/omet12926
IDF Consensus Worldwide Definition of the Metabolic Syndrome, 2006. https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html.
Fathi Dizaji, B., The investigations of genetic determ-inants of the metabolic syndrome, Diabetes Metab. Syndr., 2018, vol. 12, p. 783–789. https://doi.org/10.1016/j.dsx.2018.04.009
Matsuzawa, Y., Funahashi, T., and Nakamura, T., The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism, J. Atheroscler. Thromb., 2011, vol. 18, no. 8, p. 629. https://doi.org/10.5551/jat.7922
Article CAS PubMed Google Scholar
Pekgor, S., Duran, C., Berberoglu, U. and Eryilmaz, M.A., The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients, Metab. Syndr. Relat. Disord., 2019, vol. 17, no. 5, p. 296. https://doi.org/10.1089/met.2019.0005
Article CAS PubMed Google Scholar
Zhang, H.H., Halbleib, M., Ahmad, F., et al., Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP, Diabetes, 2002, vol. 51, p. 2929. https://doi.org/10.2337/diabetes.51.10.2929
Article CAS PubMed Google Scholar
Wassmann, S., Stumpf, M., Strehlow, K., et al., Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor, Circ. Res., 2004, vol. 94, p. 534. https://doi.org/10.1161/01.RES.0000115557.25127.8D
Article CAS PubMed Google Scholar
Dedov, I.I., Shestakova, M.V., Vikulova, O.K., et al., Epidemiological characteristics of diabetes mellitus in the Russian Federation: Clinical and statistical analysis according to the diabetes mellitus register as of January 1, 2021, Sakh. Diabet, 2021, vol. 24b, no. 3, pp. 404–221. https://doi.org/10.14341/DM12759
Hardy, O.T., Kim, A. Ciccarelli, C., et al., Increased Toll-like receptor (TLR) mRNA expression in monocytes is a feature of metabolic syndrome in adolescents, Pediatr. Obes., 2013, vol. 8, p. e19. https://doi.org/10.1111/j.2047-6310.2012.00098.x
Dasu, M.R., Devaraj, S., Zhao, L., et al., High glucose induces toll-like receptor expression in human monocytes: mechanism of activation, Diabetes, 2008, vol. 57, p. 3090. https://doi.org/10.2337/db08-0564
Comments (0)