K. L. Cummins and M. J. Murphy, “An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the US NLDN,” IEEE Trans. Electromag. Comp. 51 (3), 499–518 (2009).
A. V. Panyukov, D. V. Buduev, and D. N. Malov, “Systems for passive monitoring of thunderstorm activity,” Vest. Yuzhno-Ural’skogo Gos. Univ. Ser.: Matematika. Mekhanika. Fizika, No. 4, 11–20 (2003).
E. H. Lay, PhD Thesis (University of Washington, Seattle, 2008).
A. Kh. Adzhiev, V. N. Stasenko, and V. O. Tapaskhanov, “Lightning detection system in the North Caucasus,” Russ. Meteorol. Hydrol. 38 (1), 1–5 (2013).
A. V. Snegurov and V. S. Snegurov, “Experimental lightning location system,” Trudy GGO, No. 567, 188–200 (2012).
G. D. Alexander, J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. L. Lee, “The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm,” Mon. Weather. Rev. 127 (7), 1433–1457 (1999).
D. E. Chang, J. A. Weinman, C. A. Morales, and W. S. Olson, “The effect of space borne microwave and ground-based continuous lighting measurements on forecasts of the 1998 Groundhog 2 day storm,” Mon. Weather. Rev. 129, 1809–1833 (2001).
A. T. Pessi and S. Businger, “The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean,” Mon. Weather. Rev. 137 (10), 3177–3195 (2009).
A. O. Fierro, E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, “Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011,” Mon. Weather. Rev. 140 (8), 2609–2627 (2012).
A. O. Fierro, A. J. Clark, E. R. Mansell, D. R. MacGorman, S. R. Dembek, and C. L. Ziegler, “Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States,” Mon. Weather. Rev. 143 (3), 757–777 (2015).
A. O. Fierro, J. Gao, C. L. Ziegler, K. M. Calhoun, E. R. Mansell, and D. R. MacGorman, “Assimilation of flash extent data in the variational framework at convection-allowing scales: Proof-of-concept and evaluation for the short-term forecast of the 24 May 2011 tornado outbreak,” Mon. Weather. Rev. 144 (11), 4373–4393 (2016).
Y. Wang, Y. Yang, and C. Wang, “Improving forecasting of strong convection by assimilating cloud-to-ground lightning data using the physical initialization method,” Atmos. Res. 150, 31–41 (2014).
A. Papadopoulos, T. G. Chronis, and E. N. Anagnostou, “Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model,” Mon. Weather. Rev. 133 (7), 1961–1977 (2005).
T. M. Giannaros, V. Kotroni, and K. Lagouvardos, “WRFLTNGDA: A lightning data assimilation technique implemented in the WRF Model for improving precipitation forecasts,” Environ. Model. Softw. 76, 54–68 (2016).
N. K. Heath, J. E. Pleim, R. C. Gilliam, and D. Kang, “A simple lightning assimilation technique for improving retrospective WRF simulations,” J. Adv. Model. Earth Syst.8 (4), 1806–1824 (2016).
K. Dixon, C. F. Mass, G. J. Hakim, and R. H. Holzworth, “The impact of lightning data assimilation on deterministic and ensemble forecasts of convective events,” J. Atmos. Ocean. Technol. 33 (9), 1801–1823 (2016).
https://arxiv.org/abs/1306.1884. Cited February 14, 2024.
Z. Chen, X. Qie, D. Liu, and Y. Xiong, “Lightning data assimilation with comprehensively nudging water contents at cloud-resolving scale using WRF model,” Atmos. Res. 221, 72–87 (2019).
K. G. Rubinstein, I. M. Gubenko, R. Yu. Ignatov, N. D. Tikhonenko, and Yu. I. Yusupov, “Experiments on lightning detection network data assimilation,” Atmos. Ocean. Opt. 33 (2), 219–228 (2020).
I. M. Gubenko and K. G. Rubinstein, “An example of assimilation of data from several lightning detection networks in a numerical weather forecast,” Atmos. Ocean. Opt. 35 (1), 65–71 (2022).
G. Feng, X. Qie, T. Yuan, and S. Niu, “Analysis on lightning activity and precipitation structure of hailstorms,” Sci. China. Ser. D. Earth Sci. 50 (4), 629–663 (2007).
Z. I. Janjic, “The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes,” Mon. Weather. Rev. 122, 927–945 (1994).
J. S. Kain, “The Kain–Fritsch convective parameterization: An update,” J. Appl. Meteorol. 43 (1), 170–181 (2004).
W. C. Skamarock and J. B. Klemp, “A time-split nonhydrostatic atmospheric model for research and NWP applications,” J. Comp. Phys. 227 (7), 3465–3485 (2008).
E. R. Mansell, C. L. Ziegler, and E. C. Bruning, “Simulated electrification of a small thunderstorm with two-moment bulk microphysics,” J. Atmos. Sci. 67, 171–194 (2010).
M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,” J. Geophys. Res. 113, D13103 (2008).
Guo-Yue. Niu, Z.-L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, A. Kumar, K. Manning, D. Niyogi, E. Rosero, M. Tewari, and Y. Xia, “The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements,” J. Geophys. Res. 116, D12109 (2011).
M. Nakanishi and H. Niino, “Development of an improved turbulence closure model for the atmospheric boundary layer,” J. Meteor. Soc. Japan 87, 895–912 (2009).
https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global-precipitation-climatology-project. Cited August 13, 2023.
Comments (0)