Z. Li, H. Shen, H. Li, G. Xid, P. Gamba, and L. Zhang, “Multi-feature combined cloud and cloud-shadow detection in Gaofen-1 widefield of view imagery,” Remote Sens. Environ. 191, 342–358 (2017). https://doi.org/10.1016/j.rse.2017.01.026
P. Bo, S. Fenzhen, and M. Yunshan, “A cloud and cloud shadow detection methods based on Fuzzy C-Means algorithm,” IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 13, 1714–1727 (2020). https://doi.org/10.1109/JSTARS.2020.2987844
L. Sun, X. Mi, J. Wei, J. Wang, X. Tian, H. Yu, and P. Gan, “A cloud detection algorithm generating method for remote sensing data at visible to short-wave infrared wavelengths,” ISPRS J. Photogramm. 125 (D24), 70–88 (2017). https://doi.org/10.1016/j.isprsjprs.2016.12.005
L. Sun, J. Wei, J. Wang, X. Mi, Y. Guo, Y. Lv, Y. Yang, P. Gan, X. Zhou, C. Jio, C. Jiawei, and X. Tian, “A Universal Dynamic Threshold Cloud Detection Algorithm (UNSADA) supported by a prior surface,” J. Geophys. Res.: Atmos. 121 (12), 7172–7196 (2016). https://doi.org/10.1002/2015JD024722
G. Mateo-Garcia, L. Gomez-Chova, J. Amoros-Lopez, J. Munoz-Mari, and G. Camps-Valls, “Multitemporal cloud masking in the Google Earth Engine,” Remote Sens. 10 (7), 1079 (2018). https://doi.org/10.3390/rs10071079
A. Lyapustin, Y. Wang, and R. Frey, “An automatic cloud mask algorithm based on time series of MODIS measurements,” J. Geophys. Res. 113, D16207 (2008). https://doi.org/10.1029/2007JD009641
J. Bian, A. Li, Q. Liu, and C. Huang, “Cloud and snow discrimination for CCD images of HJ-1A/B constellation based on spectral signature and spatio-temporal context,” Remote Sens. 8 (31) (2016). https://doi.org/10.3390/rs8010031
A. M. Belov and A. Yu. Denisova, “Scene distortion detection algorithm using multitemporal remote sensing images”, Comp. Opt. 43 (5), 869–885 (2019). https://doi.org/10.18287/2412-6179-2019-43-5-869-885
O. Hagolle, M. Huo, Pascual D. Villa, and G. Dedieu, “A multi-temporal method for cloud detection, applied to Formosat-2, VeNμS, Landsat, and Sentinel-2 images,” Remote Sens. Environ. 114 (8), 1747–1755 (2010). https://doi.org/10.1016/j.rse.2010.03.002
X. Zhu and E. H. Helmer, “An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy region,” RSE 214, 135–153 (2018). https://doi.org/10.1016/j.rse.2018.05.024
Yu. V. Vizilter, V. S. Gorbatsevich, and S. Yu. Zheltov, “Structure-functional analysis and synthesis of deep convolutional neural networks,” Comp. Opt. 43 (5), 886–900 (2019). https://doi.org/10.18287/2412-6179-2019-43-5-886-900
Y. Shendryk, Y. Rist, C. Ticehurst, and P. Thorburn, “Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery,” ISPRS J. Photogramm. 157, 124–136 (2019). https://doi.org/10.1016/j.isprsjprs.2019.08.018
A. I. Andreev and Yu. A. Shamilova, “Cloud detection using Himawari-8 satellite with a convolutional neural network,” Issled. Zemli Kosmosa, No. 2, 42–52 (2021). https://doi.org/10.31857/S0205961421010036
M. Zheng, W. Tang, and X. Zhao, “Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing,” Int. J. Geogr. Inf. Sci. 33, 314–345 (2019). https://doi.org/10.1080/13658816.2018.1530355
H. Fu, Y. Shen, J. Liu, G. He, J. Chen, P. Liu, J. Qian, and J. Li, “Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach,” Remote Sens. 11 (1), 44 (2019). https://doi.org/10.3390/rs11010044
N. Ghasemian and M. Akhoondzadeh, “Integration of VIR and thermal bands for cloud, snow/ice and thin cirrus detection in MODIS satellite images,” in Proc. of the Third International Conference on Intelligent Decision Science, Tehran, Iran, May 1–37, 2018 (Tehran, 2018), pp. 1–37.
H. Liu, D. Zeng, and Q. Tian, “Super-pixel cloud detection using hierarchical fusion CNN,” in Proc. of the Fourth International Conference on Multimedia Big Data (IEEE, 2018), pp. 1–6. https://doi.org/10.1109/BigMM.2018.8499091
L. Wang, Y. Chen, L. Tang, R. Fan, and Y. Yao, “Object-based convolutional neural networks for cloud and snow detection in high-resolution multispectral imagers,” Water 10 (11), 1666 (2018). https://doi.org/10.3390/w10111666
L. Gilpin, D. Bau, B. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining explanations: An overview of interpretability of machine learning,” in The 5th International Conference on Data Science and Advanced Analytics (DSAA) Turin, Italy, 2018 (IEEE, 2018), pp. 80–89. https://doi.org/10.1109/DSAA.2018.00018
E. Strumbelj and I. Kononenko, “Explaining prediction models and individual predictions with feature contributions,” Knowl. Inf. Syst. 41, 647–665 (2014).
N. R. Goodwin, L. J. Collet, R. J. Denham, N. Flood, and D. Tindall, “Cloud and cloud shadow screening across Queensland, Australia: An automated method for LandsatTM/ETA + time-series,” Remote Sens. Environ. 134, 50–65 (2013). https://doi.org/10.1016/j.rse.2013.02.019
P. Mishra, Python AI Model Explainability (DMK-Press, Moscow, 2022) [in Russian].
T. Hastie, R. Tibshirani, and J. Friedman, “Additive models, trees, and related methods,” in The Elements of Statistical Learning (Springer, 2009), pp. 295–336.
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), USA, 2017 (IEEE, 2017), pp. 1800–1807. https://doi.org/10.1109/CVPR.2017.195
Comments (0)