Guide to Forecasting Meteorological Conditions for Aviation (Gidrometeoizdat, Leningrad, 1985) [in Russian].
N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Open Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].
N. P. Shakina, Hydrodynamic Instability in the Atmosphere (Gidrometeoizdat, Leningrad, 1990) [in Russian].
N. P. Shakina and A. R. Ivanova, Forecasting Meteorological Conditions for Aviation (TRIADA, Moscow, 2016) [in Russian].
Safety Report (International Civil Aviation Organization, Montreal, Canada, 2020).
www.aero.jaxa.jp/eng/research/star/safeavio. Cited February 12, 2023.
www.oreanda.ru/en/transport/Boeing_and_JAXA_to_Flight-test/article1173457/. Cited February 12, 2023.
T. Asahara and H. Inokuchi, US Patent No. US 8,434,358 B2 (May 7, 2013).
M. Yu. Arshinov, B. D. Belan, V. K. Kovalevskii, A. P. Plotnikov, T. K. Sklyadneva, and G. N. Tolmachev, “Long-term variability of tropospheric aerosol over Western Siberia,” Atmos. Ocean. Opt. 13 (6–7), 580–583 (2000).
https://cordis.europa.eu/project/id/233801. Cited February 12, 2023.
A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Inventor’s Certificate no. 359. Byull. Izobret., No. 21 (1989).
A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv., Atmos. Ocean. Phys. 48 (6), 585–594 (2012).
I. A. Razenkov, “Turbulent lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).
I. A. Razenkov, “Engineering and technical solutions when designing a turbulent lidar,” Atmos. Ocean. Opt. 35 (S1), S148–S158 (2022).
Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25 (7), 494–508 (1982).
V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2), 156–161 (2017).
V. V. Voitsekhovich, V. G. Orlov, S. Guevas, and R. Avila, “Efficiency of off-axis astronomical adaptive systems: Comparison of theoretical and experimental data,” Astron. Astrophys. Suppl. Ser. 133, 427–430 (1998).
I. A. Razenkov, “Sounding of Kelvin–Helmholtz waves by a turbulent lidar: I—BSE-4 lidar,” Atmos. Ocean. Opt. 37 (1), 55–65 (2024).
M. A. Kallistratova, V. S. Lyulyukin, R. D. Kuznetsov, I. V. Petenko, D. V. Zaitseva, and D. D. Kuznetsov, “Sodar research of Kelvin–Helmholtz waves in low-level jets,” in Dynamics of Wave and Exchange Processes in the Atmosphere (GEOS, Moscow, 2017), pp. 212–259 [in Russian].
https://www.ventusky.com/. Cited February 12, 2023.
A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khme-levtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].
I. A. Razenkov, B. D. Belan, K. A. Rynkov, and G. A. Ivlev, RF Patent No. 2 023 106 962, Byull. Izobret., No. 18 (2023).
Comments (0)