The Use of the Turbulent Lidar for Aviation Safety

Guide to Forecasting Meteorological Conditions for Aviation (Gidrometeoizdat, Leningrad, 1985) [in Russian].

N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Open Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].

Google Scholar 

N. P. Shakina, Hydrodynamic Instability in the Atmosphere (Gidrometeoizdat, Leningrad, 1990) [in Russian].

Google Scholar 

N. P. Shakina and A. R. Ivanova, Forecasting Meteorological Conditions for Aviation (TRIADA, Moscow, 2016) [in Russian].

Google Scholar 

Safety Report (International Civil Aviation Organization, Montreal, Canada, 2020).

www.aero.jaxa.jp/eng/research/star/safeavio. Cited February 12, 2023.

www.oreanda.ru/en/transport/Boeing_and_JAXA_to_Flight-test/article1173457/. Cited February 12, 2023.

T. Asahara and H. Inokuchi, US Patent No. US 8,434,358 B2 (May 7, 2013).

M. Yu. Arshinov, B. D. Belan, V. K. Kovalevskii, A. P. Plotnikov, T. K. Sklyadneva, and G. N. Tolmachev, “Long-term variability of tropospheric aerosol over Western Siberia,” Atmos. Ocean. Opt. 13 (6–7), 580–583 (2000).

Google Scholar 

https://cordis.europa.eu/project/id/233801. Cited February 12, 2023.

A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Inventor’s Certificate no. 359. Byull. Izobret., No. 21 (1989).

A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv., Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

Article  Google Scholar 

I. A. Razenkov, “Turbulent lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

Article  Google Scholar 

I. A. Razenkov, “Engineering and technical solutions when designing a turbulent lidar,” Atmos. Ocean. Opt. 35 (S1), S148–S158 (2022).

Article  ADS  Google Scholar 

Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25 (7), 494–508 (1982).

Article  ADS  Google Scholar 

V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2), 156–161 (2017).

Article  Google Scholar 

V. V. Voitsekhovich, V. G. Orlov, S. Guevas, and R. Avila, “Efficiency of off-axis astronomical adaptive systems: Comparison of theoretical and experimental data,” Astron. Astrophys. Suppl. Ser. 133, 427–430 (1998).

Article  ADS  Google Scholar 

I. A. Razenkov, “Sounding of Kelvin–Helmholtz waves by a turbulent lidar: I—BSE-4 lidar,” Atmos. Ocean. Opt. 37 (1), 55–65 (2024).

Article  Google Scholar 

M. A. Kallistratova, V. S. Lyulyukin, R. D. Kuznetsov, I. V. Petenko, D. V. Zaitseva, and D. D. Kuznetsov, “Sodar research of Kelvin–Helmholtz waves in low-level jets,” in Dynamics of Wave and Exchange Processes in the Atmosphere (GEOS, Moscow, 2017), pp. 212–259 [in Russian].

Google Scholar 

https://www.ventusky.com/. Cited February 12, 2023.

A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khme-levtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

Google Scholar 

I. A. Razenkov, B. D. Belan, K. A. Rynkov, and G. A. Ivlev, RF Patent No. 2 023 106 962, Byull. Izobret., No. 18 (2023).

Comments (0)

No login
gif