Wind Effect on H2O Absorption Lines Perturbed by He, Ar, Kr, and Xe Pressure

V. I. Starikov, T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. M. Deichuli, “Experimental and theoretical analysis of the broadening and shift of H2O absorption lines by monatomic gases in a wide spectral range,” Atmos. Ocean. Opt. 36 (5), 433–453 (2023).

Article  Google Scholar 

S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9 (5), 701–716 (1967).

Article  ADS  Google Scholar 

L. Galatry, “Simultaneous effect of doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).

Article  ADS  Google Scholar 

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr, and nitrogen in the spectral range 1850–2140 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).

Article  ADS  Google Scholar 

J. Buldyreva, N. N. Lavrent’eva, and V. I. Starikov, Collisional Line Broadening and Shifting of Atmosphyric Gase. A Practical Guide for Line Shape Modeling by Current Semi-Classical Approaches (Imperial College Press, London, 2010).

Book  Google Scholar 

V. P. Kochanov, “Analytical approximations for speed-dependent spectral line profiles,” J. Quant. Spectrosc. Radiat. Transfer 112, 2762–2770 (2011).

Article  ADS  Google Scholar 

V. I. Starikov, “Calculation of the influence of the wind effect and collision-induced velocity changes on the H2O-molecule absorption-line profiles upon broadening by monatomic gases,” Opt. Spectrosc. 116 (2), 219–227 (2014).

Article  ADS  Google Scholar 

V. M. Deichuli, T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm–1 spectral region,” Mol. Phys. 121, 15–21 (2023).

Article  Google Scholar 

H. Tran, N. H. Ngo, and J.-M. Hartmann, “Efficient computation of some speed-dependent isolated line profiles,” J. Quant. Spectrosc. Radiat. Transfer 129, 199–203 (2013).

Article  ADS  Google Scholar 

B. Labani, J. Bonamy, D. Robert, J.-M. Hartmann, and J. Taine, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).

Article  ADS  Google Scholar 

T. M. Petrova, A. M. Solodov, V. I. Starikov, and A. A. Solodov, “Measurements and calculations of he-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band,” Mol. Phys. 110, 1493–03 (2012).

Article  ADS  Google Scholar 

T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band,” J. Quant. Spectrosc. Radiat. Transfer 148, 116–126 (2014).

Article  ADS  Google Scholar 

T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Starikov, “Measurements and calculations of krypton broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O,” J. Mol. Spectrosc. 365, 111209 (2019).

Article  Google Scholar 

T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Starikov, “Measurements and calculations of xenon broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O,” J. Mol. Spectrosc. 382, 111546 (2021).

Article  Google Scholar 

D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).

Article  Google Scholar 

J. Keilson and J. E. Storer, “On Brownian motion, Boltzmann’s equation, and the Fokker–Planck equation,” Q. Appl. Math. 10, 243–253 (1952).

Article  MathSciNet  Google Scholar 

B. E. Grossmann and E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).

Article  ADS  Google Scholar 

B. E. Grossmann and E. V. Browell, “Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region,” J. Quant. Spectrosc. Radiat. Transfer 45, 339–348 (1991).

Article  ADS  Google Scholar 

Comments (0)

No login
gif