Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154 (2013).
Article CAS PubMed Google Scholar
Cervero, F. & Laird, J. M. Visceral pain. Lancet 353, 2145–2148 (1999).
Article CAS PubMed Google Scholar
Collett, B. Visceral pain: the importance of pain management services. Br. J. Pain. 7, 6–7 (2013).
Article PubMed PubMed Central Google Scholar
Fass, R. & Navarro-Rodriguez, T. Noncardiac chest pain. J. Clin. Gastroenterol. 42, 636–646 (2008).
Gasbarrini, A. et al. Small intestinal bacterial overgrowth: diagnosis and treatment. Dig. Dis. 25, 237–240 (2007).
Kappelman, M. D. et al. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5, 1424–1429 (2007).
Lee, R. W., Hodgson, L. E., Jackson, M. B. & Adams, N. Problem based review: pleuritic chest pain. Acute Med. 11, 172–182 (2012).
Article CAS PubMed Google Scholar
Sikandar, S. & Dickenson, A. H. Visceral pain – the ins and outs, the ups and downs. Curr. Opin. Support. Palliat. Care 6, 17–26 (2012).
Article PubMed PubMed Central Google Scholar
Drewes, A. M. et al. Gastrointestinal pain. Nat. Rev. Dis. Prim. 6, 1 (2020).
Grundy, L., Erickson, A. & Brierley, S. M. Visceral pain. Annu. Rev. Physiol. 81, 261–284 (2019).
Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).
Cervero, F. Visceral pain: mechanisms of peripheral and central sensitization. Ann. Med. 27, 235–239 (1995).
Article CAS PubMed Google Scholar
Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).
Article CAS PubMed PubMed Central Google Scholar
Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).
Article CAS PubMed PubMed Central Google Scholar
Phillips, R. J. & Powley, T. L. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 136, 1–19 (2007).
Article PubMed PubMed Central Google Scholar
Uesaka, T., Young, H. M., Pachnis, V. & Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 417, 158–167 (2016).
Article CAS PubMed Google Scholar
Altschuler, S. M., Escardo, J., Lynn, R. B. & Miselis, R. R. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104, 502–509 (1993).
Article CAS PubMed Google Scholar
Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).
Article CAS PubMed Google Scholar
Grundy, D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 51, 2–5 (2002).
Sengupta, J. N. in Sensory Nerves. Handbook of Experimental Pharmacology Vol. 194 (eds Canning, B. & Spina, D.) 31–74 (Springer, 2009).
Yu, S., Kollarik, M., Ouyang, A., Myers, A. C. & Undem, B. J. Mast cell-mediated long-lasting increases in excitability of vagal C fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G850–G856 (2007).
Article CAS PubMed Google Scholar
Kollarik, M., Ru, F. & Brozmanova, M. Vagal afferent nerves with the properties of nociceptors. Auton. Neurosci. 153, 12–20 (2010).
Article CAS PubMed Google Scholar
Yu, S., Undem, B. J. & Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 563, 831–842 (2005).
Article CAS PubMed PubMed Central Google Scholar
Yu, S., Ru, F., Ouyang, A. & Kollarik, M. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus. Neurogastroenterol. Motil. 20, 1042–1050 (2008).
Article CAS PubMed Google Scholar
Bielefeldt, K. & Davis, B. M. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G130–G138 (2008).
Article CAS PubMed Google Scholar
Bielefeldt, K., Zhong, F., Koerber, H. R. & Davis, B. M. Phenotypic characterization of gastric sensory neurons in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G987–G997 (2006).
Article CAS PubMed Google Scholar
Kang, Y.-M., Bielefeldt, K. & Gebhart, G. F. Sensitization of mechanosensitive gastric vagal afferent fibers in the rat by thermal and chemical stimuli and gastric ulcers. J. Neurophysiol. 91, 1981–1989 (2004).
Article CAS PubMed Google Scholar
Ozaki, N. & Gebhart, G. F. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1449–G1459 (2001).
Article CAS PubMed Google Scholar
Sengupta, J. N., Saha, J. K. & Goyal, R. K. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J. Neurophysiol. 64, 796–812 (1990).
Article CAS PubMed Google Scholar
Sengupta, J. N., Saha, J. K. & Goyal, R. K. Differential sensitivity to bradykinin of esophageal distension-sensitive mechanoreceptors in vagal and sympathetic afferents of the opossum. J. Neurophysiol. 68, 1053–1067 (1992).
Article CAS PubMed Google Scholar
Charney, K. J., Juler, G. L. & Comarr, A. E. General surgery problems in patients with spinal cord injuries. Arch. Surg. 110, 1083–1088 (1975).
Article CAS PubMed Google Scholar
Finnerup, N. B., Faaborg, P., Krogh, K. & Jensen, T. S. Abdominal pain in long-term spinal cord injury. Spinal Cord. 46, 198–203 (2008).
Article CAS PubMed Google Scholar
Levinthal, D. J. & Bielefeldt, K. Pain without nociception? Eur. J. Gastroenterol. Hepatol. 24, 336–339 (2012).
Yung, J. C. & Groah, S. L. Crohn’s disease in a patient with acute spinal cord injury: a case report of diagnostic challenges in the rehabilitation setting. Arch. Phys. Med. Rehabil. 82, 1274–1278 (2001).
Comments (0)