Johnson, J. L., Greaves, L. & Repta, R. Better science with sex and gender: facilitating the use of a sex and gender-based analysis in health research. Int. J. Equity Health 8, 14 (2009).
Article PubMed PubMed Central Google Scholar
Costello, J. T., Bieuzen, F. & Bleakley, C. M. Where are all the female participants in sports and exercise medicine research? Eur. J. Sport. Sci. 14, 847–851 (2014).
Hagstrom, A. D., Yuwono, N., Warton, K. & Ford, C. E. Sex bias in cohorts included in sports medicine research. Sports Med. 51, 1799–1804 (2021).
Knowles, O. E. et al. Resistance training and skeletal muscle protein metabolism in eumenorrheic females: implications for researchers and practitioners. Sports Med. 49, 1637–1650 (2019).
Landen, S. et al. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J. Physiol. 601, 419–434 (2023).
Article CAS PubMed Google Scholar
O’Bryan, S. M., Connor, K. R., Drummer, D. J., Lavin, K. M. & Bamman, M. M. Considerations for sex-cognizant research in exercise biology and medicine. Front. Sports Act. Living 4, 903992 (2022).
Article PubMed PubMed Central Google Scholar
DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, S157–S163 (2009).
Article CAS PubMed PubMed Central Google Scholar
Ashcroft, S. P., Stocks, B., Egan, B. & Zierath, J. R. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab. 36, 278–300 (2024).
Article CAS PubMed Google Scholar
Bredella, M. A. Sex differences in body composition. Adv. Exp. Med. Biol. 1043, 9–27 (2017).
Article CAS PubMed Google Scholar
Janssen, I., Heymsfield, S. B., Wang, Z. M. & Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. 89, 81–88 (2000).
Article CAS PubMed Google Scholar
Mingrone, G. et al. Different limit to the body’s ability of increasing fat-free mass. Metabolism 50, 1004–1007 (2001).
Article CAS PubMed Google Scholar
Morio, B. et al. Gender differences in energy expended during activities and in daily energy expenditure of elderly people. Am. J. Physiol. 273, E321–E327 (1997).
Cheng, Y., Yang, X., Na, L. X., Li, Y. & Sun, C. H. Gender- and age-specific REE and REE/FFM distributions in healthy Chinese adults. Nutrients 8, 536 (2016).
Article PubMed PubMed Central Google Scholar
Horton, T. J., Pagliassotti, M. J., Hobbs, K. & Hill, J. O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 85, 1823–1832 (1998).
Article CAS PubMed Google Scholar
Mittendorfer, B., Horowitz, J. F. & Klein, S. Gender differences in lipid and glucose kinetics during short-term fasting. Am. J. Physiol. Endocrinol. Metab. 281, E1333–E1339 (2001).
Article CAS PubMed Google Scholar
Tarnopolsky, M. A., Atkinson, S. A., Phillips, S. M. & MacDougall, J. D. Carbohydrate loading and metabolism during exercise in men and women. J. Appl. Physiol. 78, 1360–1368 (1995).
Article CAS PubMed Google Scholar
Lundsgaard, A. M. & Kiens, B. Gender differences in skeletal muscle substrate metabolism – molecular mechanisms and insulin sensitivity. Front. Endocrinol. 5, 195 (2014).
Kautzky-Willer, A., Harreiter, J. & Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 37, 278–316 (2016).
Article CAS PubMed PubMed Central Google Scholar
Paula, F. J. et al. Sex-related differences in peripheral glucose metabolism in normal subjects. Diabete Metab. 16, 234–239 (1990).
Gershoni, M. & Pietrokovski, S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 15, 7 (2017).
Article PubMed PubMed Central Google Scholar
Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lindholm, M. E. et al. The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J. 28, 4571–4581 (2014).
Article CAS PubMed Google Scholar
Chapman, M. A. et al. Skeletal muscle transcriptomic comparison between long-term trained and untrained men and women. Cell Rep. 31, 107808 (2020).
Article CAS PubMed Google Scholar
Larsen, J. K. et al. Personalized molecular signatures of insulin resistance and type 2 diabetes. Preprint at bioRxiv https://doi.org/10.1101/2024.02.06.578994 (2024).
Pataky, M. W. et al. Impact of biological sex and sex hormones on molecular signatures of skeletal muscle at rest and in response to distinct exercise training modes. Cell Metab. 35, 1996–2010.e6 (2023).
Article CAS PubMed PubMed Central Google Scholar
Landen, S. et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin. Epigenetics 13, 202 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bouchard, C. & Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 33, S446–S451 (2001).
Article CAS PubMed Google Scholar
Smith, J. A. B., Murach, K. A., Dyar, K. A. & Zierath, J. R. Exercise metabolism and adaptation in skeletal muscle. Nat. Rev. Mol. Cell Biol. 24, 607–632 (2023).
Article CAS PubMed PubMed Central Google Scholar
Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020).
Article CAS PubMed PubMed Central Google Scholar
Landen, S. et al. Sex differences in muscle protein expression and DNA methylation in response to exercise training. Biol. Sex. Differ. 14, 56 (2023).
Article CAS PubMed PubMed Central Google Scholar
Emanuelsson, E. B. et al. Remodeling of the human skeletal muscle proteome found after long-term endurance training but not after strength training. iScience 27, 108638 (2024).
Pataky, M. W. et al. Divergent skeletal muscle metabolomic signatures of different exercise training modes independently predict cardiometabolic risk factors. Diabetes 73, 23–37 (2023).
Talbot, J. & Maves, L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip. Rev. Dev. Biol. 5, 518–534 (2016).
Comments (0)