Myers, M. G. Jr., Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 3, 737–750 (2021).
Banks, W. A. The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).
Article CAS PubMed Google Scholar
Kim, K. S., Seeley, R. J. & Sandoval, D. A. Signalling from the periphery to the brain that regulates energy homeostasis. Nat. Rev. Neurosci. 19, 185–196 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ayloo, S. & Gu, C. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 57, 32–38 (2019).
Article CAS PubMed PubMed Central Google Scholar
Langen, U. H., Ayloo, S. & Gu, C. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35, 591–613 (2019).
Article CAS PubMed PubMed Central Google Scholar
Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
Article CAS PubMed Google Scholar
Hillman, E. M. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).
Article CAS PubMed Google Scholar
Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170.e10 (2021).
Article CAS PubMed PubMed Central Google Scholar
Jais, A. & Bruning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).
Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).
Langlet, F. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).
Article CAS PubMed PubMed Central Google Scholar
Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).
Article PubMed PubMed Central Google Scholar
Jiang, H. et al. MCH neurons regulate permeability of the median eminence barrier. Neuron 107, 306–319 e309 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hosli, L. et al. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep. 39, 110599 (2022).
Article CAS PubMed Google Scholar
Marina, N. et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66, 1185–1199 (2018).
Yi, C. X. et al. High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1, 95–100 (2012).
Article CAS PubMed PubMed Central Google Scholar
McManus, R. et al. Dynamic response of cerebral blood flow to insulin-induced hypoglycemia. Sci. Rep. 10, 21300 (2020).
Article CAS PubMed PubMed Central Google Scholar
Li, Z. et al. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front. Endocrinol. 15, 1393253 (2024).
Hernandez-Garzon, E. et al. The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia 64, 1962–1971 (2016).
Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).
Article CAS PubMed PubMed Central Google Scholar
Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).
Article CAS PubMed Google Scholar
van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).
Amen, D. G., Wu, J., George, N. & Newberg, A. Patterns of regional cerebral blood flow as a function of obesity in adults. J. Alzheimers Dis. 77, 1331–1337 (2020).
Article PubMed PubMed Central Google Scholar
Glodzik, L. et al. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front. Aging Neurosci. 14, 948470 (2022).
Article CAS PubMed PubMed Central Google Scholar
Knight, S. P. et al. Obesity is associated with reduced cerebral blood flow — modified by physical activity. Neurobiol. Aging 105, 35–47 (2021).
Article PubMed PubMed Central Google Scholar
Chhabria, K. et al. The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. J. Cereb. Blood Flow Metab. 40, 298–313 (2020).
Article CAS PubMed Google Scholar
Liu, J. et al. Cerebral blood flow alterations in type 2 diabetes mellitus: a systematic review and meta-analysis of arterial spin labeling studies. Front. Aging Neurosci. 14, 847218 (2022).
Article CAS PubMed PubMed Central Google Scholar
Li, W. et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1001–1008 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gomez-Smith, M. et al. Reduced cerebrovascular reactivity and increased resting cerebral perfusion in rats exposed to a cafeteria diet. Neuroscience 371, 166–177 (2018).
Comments (0)