The interactions between energy homeostasis and neurovascular plasticity

Myers, M. G. Jr., Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 3, 737–750 (2021).

Article  PubMed  Google Scholar 

Banks, W. A. The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

Article  CAS  PubMed  Google Scholar 

Kim, K. S., Seeley, R. J. & Sandoval, D. A. Signalling from the periphery to the brain that regulates energy homeostasis. Nat. Rev. Neurosci. 19, 185–196 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayloo, S. & Gu, C. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 57, 32–38 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langen, U. H., Ayloo, S. & Gu, C. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35, 591–613 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

Article  CAS  PubMed  Google Scholar 

Hillman, E. M. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).

Article  CAS  PubMed  Google Scholar 

Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170.e10 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jais, A. & Bruning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

Article  PubMed  Google Scholar 

Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

Article  PubMed  Google Scholar 

Langlet, F. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, H. et al. MCH neurons regulate permeability of the median eminence barrier. Neuron 107, 306–319 e309 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosli, L. et al. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep. 39, 110599 (2022).

Article  CAS  PubMed  Google Scholar 

Marina, N. et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66, 1185–1199 (2018).

Article  PubMed  Google Scholar 

Yi, C. X. et al. High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1, 95–100 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McManus, R. et al. Dynamic response of cerebral blood flow to insulin-induced hypoglycemia. Sci. Rep. 10, 21300 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front. Endocrinol. 15, 1393253 (2024).

Article  Google Scholar 

Hernandez-Garzon, E. et al. The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia 64, 1962–1971 (2016).

Article  PubMed  Google Scholar 

Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

Article  CAS  PubMed  Google Scholar 

van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

Article  PubMed  Google Scholar 

Amen, D. G., Wu, J., George, N. & Newberg, A. Patterns of regional cerebral blood flow as a function of obesity in adults. J. Alzheimers Dis. 77, 1331–1337 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Glodzik, L. et al. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front. Aging Neurosci. 14, 948470 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knight, S. P. et al. Obesity is associated with reduced cerebral blood flow — modified by physical activity. Neurobiol. Aging 105, 35–47 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Chhabria, K. et al. The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. J. Cereb. Blood Flow Metab. 40, 298–313 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, J. et al. Cerebral blood flow alterations in type 2 diabetes mellitus: a systematic review and meta-analysis of arterial spin labeling studies. Front. Aging Neurosci. 14, 847218 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W. et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1001–1008 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez-Smith, M. et al. Reduced cerebrovascular reactivity and increased resting cerebral perfusion in rats exposed to a cafeteria diet. Neuroscience 371, 166–177 (2018).

Article  CAS  PubMed 

Comments (0)

No login
gif