Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2′-19F probe in nucleic acids

Abragam A (1961) The principles of nuclear magnetism. Clarendon Press, Oxford

Google Scholar 

Alderson TR, Kay LE (2021) NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184:577–595. https://doi.org/10.1016/j.cell.2020.12.034

Article  Google Scholar 

Altona C, Sundaralingam M (1973) Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc 95:2333–2344. https://doi.org/10.1021/ja00788a038

Article  Google Scholar 

Arntson KE, Pomerantz WCK (2016) Protein-observed fluorine NMR: a bioorthogonal approach for small molecule discovery. J Med Chem 59:5158–5171. https://doi.org/10.1021/acs.jmedchem.5b01447

Article  Google Scholar 

Boeszoermenyi A, Ogórek B, Jain A et al (2020) The precious fluorine on the ring: fluorine NMR for biological systems. J Biomol NMR 74:365–379. https://doi.org/10.1007/s10858-020-00331-z

Article  Google Scholar 

Bouvignies G, Vallurupalli P, Kay LE (2014) Visualizing side chains of invisible protein conformers by solution NMR. J Mol Biol 426:763–774. https://doi.org/10.1016/j.jmb.2013.10.041

Article  Google Scholar 

Buchholz CR, Pomerantz WCK (2021) 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2:1312–1330. https://doi.org/10.1039/d1cb00085c

Article  Google Scholar 

Cavanagh J, Skelton NJ, Fairbrother WJ et al (2010) Protein NMR spectroscopy: principles and practice. Elsevier, Amsterdam

Google Scholar 

Dalvit C, Vulpetti A (2019) Ligand-based fluorine NMR screening: principles and applications in drug discovery projects. J Med Chem 62:2218–2244. https://doi.org/10.1021/acs.jmedchem.8b01210

Article  Google Scholar 

Danielson MA, Falke JJ (1996) Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195. https://doi.org/10.1146/annurev.bb.25.060196.001115

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

Article  Google Scholar 

Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

Google Scholar 

Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1994) A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR 4:727–734. https://doi.org/10.1007/BF00404280

Article  Google Scholar 

Feeney J, McCormick JE, Bauer CJ et al (1996) 19F nuclear magnetic resonance chemical shifts of fluorine containing aliphatic amino acids in proteins: Studies on lactobacillus casei dihydrofolate reductase containing (2S,4S)-5-fluoroleucine. J Am Chem Soc 118:8700–8706. https://doi.org/10.1021/ja960465i

Article  Google Scholar 

Freeman R, Hill HDW (1971) Fourier transform study of NMR spin–lattice relaxation by “progressive saturation.” J Chem Phys 54:3367

Article  ADS  Google Scholar 

Frieden C, Hoeltzli SD, Bann JG (2004) The preparation of 19F-labeled proteins for NMR studies. Methods Enzymol 380:400–415. https://doi.org/10.1016/S0076-6879(04)80018-1

Article  Google Scholar 

Gao J, Liang E, Ma R et al (2017) Fluorine pseudocontact shifts used for characterizing the protein-ligand interaction mode in the limit of NMR intermediate exchange. Angew Chem Int Ed Engl 56:12982–12986. https://doi.org/10.1002/anie.201707114

Article  Google Scholar 

García De La Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730. https://doi.org/10.1016/S0006-3495(00)76630-6

Article  Google Scholar 

Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-12 nuclei. J Magn Reson 60:437–452. https://doi.org/10.1016/0022-2364(84)90055-6

Article  ADS  Google Scholar 

Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure 30:6–14. https://doi.org/10.1016/j.str.2021.09.009

Article  Google Scholar 

Guenneugues M, Berthault P, Desvaux H (1999) A method for determining B1 field inhomogeneity. Are the biases assumed in heteronuclear relaxation experiments usually underestimated? J Magn Reson 136:118–126. https://doi.org/10.1006/jmre.1998.1590

Article  ADS  Google Scholar 

Guschlbauer W, Jankowski K (1980) Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res 8:1421–1433. https://doi.org/10.1093/nar/8.6.1421

Article  Google Scholar 

Hansen AL, Lundström P, Velyvis A, Kay LE (2012) Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes. J Am Chem Soc 134:3178–3189. https://doi.org/10.1021/ja210711v

Article  Google Scholar 

Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904. https://doi.org/10.1021/jp074793o

Article  Google Scholar 

Helgstrand M, Härd T, Allard P (2000) Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange. J Biomol NMR 18:49–63. https://doi.org/10.1023/A:1008309220156

Article  Google Scholar 

Heller GT, Shukla VK, Figueiredo AM, Hansen DF (2024) Picosecond dynamics of a small molecule in its bound state with an intrinsically disordered protein. J Am Chem Soc 146:2319–2324. https://doi.org/10.1021/jacs.3c11614

Article  Google Scholar 

Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55:355–367. https://doi.org/10.1007/s10858-013-9718-x

Article  Google Scholar 

Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972. https://doi.org/10.1038/nature06522

Article  ADS  Google Scholar 

Hull WE, Sykes BD (1974) Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Biochemistry 13:3431–3437. https://doi.org/10.1021/bi00714a002

Article  Google Scholar 

Hull WE, Sykes BD (1975a) Dipolar nuclear spin relaxation of 19F in multispin systems: application to 19F labeled proteins. J Chem Phys 63:867

Article  ADS  Google Scholar 

Hull WE, Sykes BD (1975b) Fluorotyrosine alkaline phosphatase: Internal mobility of individual tyrosines and the role of chemical shift anisotropy as a 19F nuclear spin relaxation mechanism in proteins. J Mol Biol 98:121–153. https://doi.org/10.1016/S0022-2836(75)80105-7

Article  Google Scholar 

Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248. https://doi.org/10.1023/A:1022851228405

Article  Google Scholar 

Ishima R, Wingfield PT, Stahl SJ et al (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542. https://doi.org/10.1021/ja981546c

Article  Google Scholar 

Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553. https://doi.org/10.1063/1.438208

Article  ADS  Google Scholar 

Kalk A, Berendsen HJC (1976) Proton magnetic relaxation and spin diffusion in proteins. J Magn Reson 24:343–366. https://doi.org/10.1016/0022-2364(76)90115-3

Article  ADS  Google Scholar 

Karplus M, McCammon JA (1983) Dynamics of proteins: elements and function. Annu Rev Biochem 52:263–300. https://doi.org/10.1146/annurev.bi.52.070183.001403

Article  Google Scholar 

Kawasaki AM, Casper MD, Freier SM et al (1993) Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 36:831–841. https://doi.org/10.1021/jm00059a007

Article  Google Scholar 

Kay LE, Nicholson LK, Delaglio F et al (1992) Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J Magn Reson 97:359–375. https://doi.org/10.1016/0022-2364(92)90320-7

Article  ADS  Google Scholar 

Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979. https://doi.org/10.1021/bi00449a003

Article  Google Scholar 

Kim TH, Mehrabi P, Ren Z et al (2017) The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355:2355. https://doi.org/10.1126/science.aag2355

Comments (0)

No login
gif