Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers

Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. 2005 IEEE Congress on Evolutionary Computation 2, 1769–1776 Vol. 2.

Beckwith MA, Erazo-Colon T, Johnson BA (2021) RING NMR dynamics: software for analysis of multiple NMR relaxation experiments. J Biomol NMR 75:9–23

Article  Google Scholar 

Bruni R, Kloss B (2013) High-throughput cloning and expression of integral membrane proteins in Escherichia coli. Curr Protoc Protein Sci 74:2961–29634

Google Scholar 

Butterwick JA, Loria JP, Astrof NS, Kroenke CD, Cole R, Rance M, Palmer AG (2004) Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes. J Mol Biol 339:855–871

Article  Google Scholar 

Caro JA, Harpole KW, Kasinath V, Lim J, Granja J, Valentine KG, Sharp KA, Wand AJ (2017) Entropy in molecular recognition by proteins. Proc Natl Acad Sci U S A 114:6563–6568

Article  ADS  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178

Article  Google Scholar 

Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329

Article  ADS  Google Scholar 

Gagné SM, Tsuda S, Spyracopoulos L, Kay LE, Sykes BD (1998) Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J Mol Biol 278:667–686

Article  Google Scholar 

Hsu A, O’Brien PA, Bhattacharya S, Rance M, Palmer AG (2018) Enhanced spectral density mapping through combined multiple-field deuterium 13CH2D methyl spin relaxation NMR spectroscopy. Methods 138–139:76–84

Article  Google Scholar 

Ishima R, Petkova AP, Louis JM, Torchia DA (2001) Comparison of methyl rotation axis order parameters derived from model-free analyses of 2H and 13C longitudinal and transverse relaxation rates measured in the same protein sample. J Am Chem Soc 123:6164–6171

Article  Google Scholar 

Johnson BA, Blevins RA (1994) NMR View: A computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

Article  Google Scholar 

Johnson E, Chazin WJ, Rance M (2006) Effects of calcium binding on the side-chain methyl dynamics of calbindin D9k: a 2H NMR relaxation study. J Mol Biol 357:1237–1252

Article  Google Scholar 

Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) Longitudinal and transverse 1H–15N dipolar 15N chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120:7905–7915

Article  Google Scholar 

Lee LK, Rance M, Chazin WJ, Palmer AG (1997) Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation. J Biomol NMR 9:287–298

Article  Google Scholar 

Lee AL, Kinnear SA, Wand AJ (2000) Redistribution and loss of side chain entropy upon formation of a calmodulin–peptide complex. Nat Struct Biol 7:72–77

Article  Google Scholar 

Lee AL, Sharp KA, Kranz JK, Song X-J, Wand AJ (2002) Temperature dependence of the internal dynamics of a calmodulin−peptide complex. Biochemistry 41:13814–13825

Article  Google Scholar 

LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118:9255–9264

Article  Google Scholar 

Liao X, Long D, Li DW, Brüschweiler R, Tugarinov V (2012) Probing side-chain dynamics in proteins by the measurement of nine deuterium relaxation rates per methyl group. J Phys Chem B 116:606–620

Article  Google Scholar 

Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

Article  Google Scholar 

Muhandiram DR, Yamazaki T, Sykes BD, Kay LE (1995) Measurement of 2H T1 and T1ρ relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J Am Chem Soc 117:11536–11544

Article  Google Scholar 

Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124:6449–6460

Article  Google Scholar 

Stetz MA, Caro JA, Kotaru S, Yao X, Marques BS, Valentine KG, Wand AJ (2019) Characterization of internal protein dynamics and conformational entropy by NMR relaxation. Methods Enzymol 615:237–284

Article  Google Scholar 

Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

Article  Google Scholar 

Takeuchi K, Sun ZY, Wagner G (2008) Alternate 13C–12C labeling for complete mainchain resonance assignments using Cα direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130:17210–17211

Article  Google Scholar 

Tugarinov V, Kay LE (2006) A 2H NMR relaxation experiment for the measurement of the time scale of methyl side-chain dynamics in large proteins. J Am Chem Soc 128:12484–12489

Article  Google Scholar 

Vallurupalli P, Kay LE (2005) A suite of 2H NMR spin relaxation experiments for the measurement of RNA dynamics. J Am Chem Soc 127:6893–6901

Article  Google Scholar 

Wand AJ, Sharp KA (2018) Measuring entropy in molecular recognition by proteins. Annu Rev Biophys 47:41–61

Article  Google Scholar 

Xue Y, Pavlova MS, Ryabov YE, Reif B, Skrynnikov NR (2007) Methyl rotation barriers in proteins from 2H relaxation data. Implications for protein structure. J Am Chem Soc. 129:6827–6838

Article  Google Scholar 

Yamazaki T, Yoshida M, Nagayama K (1993) Complete assignments of magnetic resonances of ribonuclease H from Escherichia coli by double- and triple-resonance 2D and 3D NMR spectroscopies. Biochemistry 32:5656–5669

Article  Google Scholar 

Comments (0)

No login
gif