Belogurov GA, Vassylyeva MN, Svetlov V et al (2007) Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 26:117–129. https://doi.org/10.1016/j.molcel.2007.02.021
Berlin K, O’Leary DP, Fushman D (2011) Fast approximations of the rotational diffusion tensor and their application to structural assembly of molecular complexes. Proteins Struct Funct Bioinforma 79:2268–2281. https://doi.org/10.1002/prot.23053
Bhuvaneshwari RA, Shivamani A, Sengupta I (2024) Line shape analysis of 19 F NMR-monitored chemical denaturation of a fold-switching protein rfah reveals its slow folding dynamics. J Phys Chem B 128:465–471. https://doi.org/10.1021/acs.jpcb.3c06550
Burmann BM, Knauer SH, Sevostyanova A et al (2012) An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303. https://doi.org/10.1016/j.cell.2012.05.042
Campos-Olivas R, Aziz R, Helms GL et al (2002) Placement of 19F into the center of GB1: effects on structure and stability. FEBS Lett 517:55–60. https://doi.org/10.1016/S0014-5793(02)02577-2
Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638. https://doi.org/10.1103/PhysRev.94.630
Chen J, Toptygin D, Brand L, King J (2008) Mechanism of the efficient tryptophan fluorescence quenching in human γD-crystallin studied by time-resolved fluorescence. Biochemistry 47:10705–10721
Chen Y, Jeong C, Savelyev A, et al (2019) ROTDIF-web and ALTENS: GenApp-based Science Gateways for Biomolecular Nuclear Magnetic Resonance (NMR) Data Analysis and Structure Modeling. In: ROTDIF-web and ALTENS: GenApp-based Science Gateways for Biomolecular Nuclear Magnetic Resonance (NMR) Data Analysis and Structure Modeling
Crowley PB, Kyne C, Monteith WB (2012) Simple and inexpensive incorporation of 19F-Tryptophan for protein NMR spectroscopy. Chem Commun 48:10681–10683. https://doi.org/10.1039/c2cc35347d
Dalvit C, Piotto M (2017) 19F NMR transverse and longitudinal relaxation filter experiments for screening: a theoretical and experimental analysis. Magn Reson Chem 55:106–114. https://doi.org/10.1002/mrc.4500
Danielson MA, Falke JJ (1996) Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195. https://doi.org/10.1146/annurev.bb.25.060196.001115
Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19:319–333. https://doi.org/10.1002/(SICI)1096-987X(199802)19:3%3c319::AID-JCC6%3e3.0.CO;2-W
Fraser JS, Clarkson MW, Degnan SC et al (2009) Hidden alternative structures of proline isomerase essential for catalysis. Nature 462:669–673. https://doi.org/10.1038/nature08615
Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc 26:293–370. https://doi.org/10.1016/0079-6565(94)80009-X
Grage SL, Wang J, Cross TA, Ulrich AS (2002) Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes. Biophys J 83:3336–3350. https://doi.org/10.1016/S0006-3495(02)75334-4
Hall JB, Fushman D (2003) Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J Biomol NMR 27:261–275. https://doi.org/10.1023/A:1025467918856
Heller GT, Shukla VK, Figueiredo AM, Hansen DF (2023) Picosecond dynamics of a small molecule in its bound state with an intrinsically disordered protein. J Am Chem Soc. https://doi.org/10.1021/jacs.3c11614
Hull E, Sykes BD (1974) fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Biochemistry 13:3431–3437
Hull WE, Sykes BD (1975) Fluorotyrosine alkaline phosphatase: internal mobility of individual tyrosines and the role of chemical shift anisotropy as a 19F nuclear spin relaxation mechanism in proteins. J Mol Biol 98:121–153. https://doi.org/10.1016/S0022-2836(75)80105-7
Kay LE, Nicholson LK, Delaglio F et al (1992) Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J Magn Reson 97:359–375. https://doi.org/10.1016/0022-2364(92)90320-7
Kemple MD, Buckley P, Yuan P, Prendergast FG (1997) Main chain and side chain dynamics of peptides in liquid solution from 13C NMR: melittin as a model peptide. Biochemistry 36:1678–1688. https://doi.org/10.1021/bi962146+
Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. analysis of experimental results. J Am Chem Soc 104:4559–4570. https://doi.org/10.1021/ja00381a010
Lokesh, Chaudhari SR, Suryaprakash N (2014) RES-TOCSY: a facile approach for accurate determination of magnitudes, and relative signs of nJHF. Chem Phys Lett 602:40–44. https://doi.org/10.1016/j.cplett.2014.04.007
Loth K, Pelupessy P, Bodenhausen G (2004) Determination chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. J Am Chem Soc 127:6062–6068. https://doi.org/10.1002/cphc.200301041
Lu M, Sarkar S, Wang M et al (2018) 19 F magic angle spinning nmr spectroscopy and density functional theory calculations of fluorosubstituted tryptophans: integrating experiment and theory for accurate determination of chemical shift tensors. J Phys Chem B 122:6148–6155. https://doi.org/10.1021/acs.jpcb.8b00377.19
Lu M, Ishima R, Polenova T, Gronenborn AM (2019) 19F NMR relaxation studies of fluorosubstituted tryptophans. J Biomol NMR 73:401–409. https://doi.org/10.1007/s10858-019-00268-y
Luck LA, Vance JE, O’Connell TM, London RE (1996) 19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero- 5-fluorotryptophan-labeled. J Biomol NMR 7:261–272
Osborne MJ, Wright PE (2001) Anisotropic rotational diffusion in model-free analysis for a ternary DHFR complex. J Biomol NMR 19:209–230. https://doi.org/10.1023/A:1011283809984
Overbeck JH, Kremer W, Sprangers R (2020) A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. J Biomol NMR 74:753–766. https://doi.org/10.1007/s10858-020-00348-4
Peng JW (2001) Cross-correlated 19F relaxation measurements for the study of fluorinated ligand-receptor interactions. J Magn Reson 153:32–47. https://doi.org/10.1006/jmre.2001.2422
Pérez LM, Ielasi FS, Bessa LM et al (2022) Visualizing protein breathing motions associated with aromatic ring flipping. Nature 602:695–700. https://doi.org/10.1038/s41586-022-04417-6
Qianzhu H, Abdelkader EH, Herath ID et al (2022) Site-specific incorporation of 7-fluoro-l-tryptophan into proteins by genetic encoding to monitor ligand binding by 19f nmr spectroscopy. ACS Sensors 7:44–49. https://doi.org/10.1021/acssensors.1c02467
Rashid S, Lee BL, Wajda B, Spyracopoulos L (2019) Side-chain dynamics of the trifluoroacetone cysteine derivative characterized by 19 F NMR relaxation and molecular dynamics simulations. J Phys Chem B 123:3665–3671. https://doi.org/10.1021/acs.jpcb.9b01741
Rule GS, Hitchens TK (2006) Fundamentals of Protein NMR Spectroscopy
Ryabov YE, Geraghty C, Varshney A, Fushman D (2006) An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. J Am Chem Soc 128:15432–15444. https://doi.org/10.1021/ja062715t
Schrodinger LLC (2015) The PyMOL molecular graphics system. Version 1:8
Seifert MHJ, Ksiazek D, Azim MK et al (2002) Slow exchange in the chromophore of a green fluorescent protein variant. J Am Chem Soc 124:7932–7942. https://doi.org/10.1021/ja0257725
Smith AJR, York R, Uhrín D, Bell NGA (2022) New 19F NMR methodology reveals structures of molecules in complex mixtures of fluorinated compounds. Chem Sci 13:3766–3774. https://doi.org/10.1039/d1sc06057k
Stone MJ, Chandrashekhar K, Holmgren A et al (1997) Comparison of backbone dynamics of reduced and oxidized Escherichia coli glutaredoxin-1 using 15N NMR relaxation measurements. Biochemistry 36:5029–5044. https://doi.org/10.1021/bi962181g
Swaminathan R, Nath U, Udgaonkar JB et al (1996) Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar. Biochemistry 35:9150–9157. https://doi.org/10.1021/bi9603478
Comments (0)