Bosi, E. et al. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl Acad. Sci. USA 113, E3801–E3809 (2016).
Article CAS PubMed PubMed Central Google Scholar
Roumagnac, P. et al. Evolutionary history of Salmonella Typhi. Science 314, 1301–1304 (2006).
Article CAS PubMed PubMed Central Google Scholar
Moura, A. et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2, 16185 (2016).
Article CAS PubMed PubMed Central Google Scholar
Maury, M. M. et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 48, 308–313 (2016).
Article CAS PubMed PubMed Central Google Scholar
Stewart, R. M. K. et al. Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J. Clin. Microbiol. 49, 993–1003 (2011).
Article CAS PubMed PubMed Central Google Scholar
Mageiros, L. et al. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat. Commun. 12, 765 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vasquez-Rifo, A., Veksler-Lublinsky, I., Cheng, Z., Ausubel, F. M. & Ambros, V. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biol. 20, 1–22 (2019).
Tazi, A. et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J. Exp. Med. 207, 2313–2322 (2010).
Article CAS PubMed PubMed Central Google Scholar
Nienaber, J. J. C. et al. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J. Infect. Dis. 204, 704–713 (2011).
Article CAS PubMed PubMed Central Google Scholar
Diard, M. & Hardt, W.-D. Evolution of bacterial virulence. FEMS Microbiol. Rev. 41, 679–697 (2017).
Article CAS PubMed Google Scholar
Brown, S. P., Cornforth, D. M. & Mideo, N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 20, 336–342 (2012).
Article CAS PubMed PubMed Central Google Scholar
Quereda, J. J. et al. Listeriolysin S is a streptolysin S-like virulence factor that targets exclusively prokaryotic cells in vivo. mBio 8, e00259–17 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rolhion, N. et al. A Listeria monocytogenes bacteriocin can target the commensal Prevotella copri and modulate intestinal infection. Cell Host Microbe 26, 691–701.e5 (2019).
Article CAS PubMed PubMed Central Google Scholar
Laabei, M. et al. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol. 13, e1002229 (2015).
Article PubMed PubMed Central Google Scholar
Hafner, L. et al. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 12, 6826 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sauders, B. D. et al. Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol. 78, 4420–4433 (2012).
Article CAS PubMed PubMed Central Google Scholar
Nightingale, K. K. et al. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl. Environ. Microbiol. 70, 4458–4467 (2004).
Article CAS PubMed PubMed Central Google Scholar
Dreyer, M. et al. Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci. Rep. 6, 36419 (2016).
Article CAS PubMed PubMed Central Google Scholar
Charlier, C. et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect. Dis. 17, 510–519 (2017).
Charlier, C. et al. Neonatal listeriosis presentation and outcome: a prospective study of 189 cases. Clin. Infect. Dis. 74, 8–16 (2022).
Louie, A., Zhang, T., Becattini, S., Waldor, M. K. & Portnoy, D. A. A multiorgan trafficking circuit provides purifying selection of Listeria monocytogenes virulence genes. mBio 10, e02948–19 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhang, T. et al. Deciphering the landscape of host barriers to Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA 114, 6334–6339 (2017).
Article CAS PubMed PubMed Central Google Scholar
Orsi, R. H. & Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 100, 5273–5287 (2016).
Article CAS PubMed PubMed Central Google Scholar
Ragon, M. et al. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4, e1000146 (2008).
Article PubMed PubMed Central Google Scholar
Lee, S. et al. Listeria monocytogenes source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones. mBio 9, e00396–18 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bertrand, S. et al. Diversity of Listeria monocytogenes strains of clinical and food chain origins in Belgium between 1985 and 2014. PLoS ONE 11, e0164283 (2016).
Article CAS PubMed PubMed Central Google Scholar
Fagerlund, A. et al. Whole-genome sequencing analysis of Listeria monocytogenes from rural, urban, and farm environments in Norway: genetic diversity, persistence, and relation to clinical and food isolates. Appl. Environ. Microbiol. 88, e0213621 (2022).
Disson, O. et al. Modeling human listeriosis in natural and genetically engineered animals. Nat. Protoc. 4, 799–810 (2009).
Article CAS PubMed Google Scholar
Maury, M. M. et al. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 10, 2488 (2019).
Article PubMed PubMed Central Google Scholar
Maury, M. M. et al. Spontaneous loss of virulence in natural populations of Listeria monocytogenes. Infect. Immun. 85, e00541–17 (2017).
Comments (0)