Host Defense Peptides: Exploiting an Innate Immune Component Against Infectious Diseases and Cancer

Abdi M, Mirkalantari S, Amirmozafari N (2019) Bacterial resistance to antimicrobial peptides. J Pept Sci 25(11):e3210. https://doi.org/10.1002/psc.3210

Article  CAS  PubMed  Google Scholar 

Adyns L, Proost P, Struyf S (2023) Role of defensins in Tumor Biology. Int J Mol Sci 24(6):5268. https://doi.org/10.3390/ijms24065268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138. https://doi.org/10.1016/j.bcp.2016.09.018

Article  CAS  PubMed  Google Scholar 

Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93(1):75–83. https://doi.org/10.1111/cbdd.13381

Article  CAS  PubMed  Google Scholar 

Ahmad A, Khan JM, Bandy A (2024) A systematic review of the design and applications of antimicrobial peptides in Wound Healing. Cureus 16(4). https://doi.org/10.7759/cureus.58178

Akbar S, Raza A, Zou Q (2024) Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. BMC Bioinformatics 25(1):102. https://doi.org/10.1186/s12859-024-05726-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhoundova D, Francica P, Rottenberg S, Rubin MA (2024) DNA damage response and mismatch repair gene defects in advanced and metastatic prostate cancer. Adv Anat Pathol 31(2):61–69. https://doi.org/10.1097/pap.0000000000000422

Article  CAS  PubMed  Google Scholar 

Alford MA, Baquir B, Santana FL, Haney EF, Hancock RE (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 11:547718. https://doi.org/10.3389/fmicb.2020.01902

Article  Google Scholar 

Almarwani B, Phambu N, Hamada YZ, Sunda-Meya A (2020) Interactions of an anionic antimicrobial peptide with zinc (II): application to bacterial mimetic membranes. Langmuir 36(48):14554–14562. https://doi.org/10.1021/acs.langmuir.0c02306

Article  CAS  PubMed  Google Scholar 

Altieri A, Marshall CL, Ramotar P, Lloyd D, Hemshekhar M, Spicer V, Mookherjee N et al (2024) Human host defence peptide LL-37 suppresses TNFα-mediated matrix metalloproteinases MMP9 and MMP13, in human bronchial epithelial cells. J Innate Immun 16(1):203–215. https://doi.org/10.1159/000537775

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Res Up 26:43–57. https://doi.org/10.1016/j.drup.2016.04.002

Article  CAS  Google Scholar 

Andrés CMC, De La Pérez JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E (2024) Anticancer activity of Metallodrugs and metallizing host defense peptides—current developments in Structure-Activity relationship. Int J Mol Sci 25(13):7314. https://doi.org/10.3390/ijms25137314

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arakal BS, Whitworth DE, James PE, Rowlands R, Madhusoodanan NPT, Baijoo MR, Livingstone PG (2023) Silico and in Vitro analyses reveal promising antimicrobial peptides from Myxobacteria. Probiotics Antimicrob Proteins 15(1):202–214. https://doi.org/10.1007/s12602-022-10036-4

Article  CAS  PubMed  Google Scholar 

Asati S, Pandey V, Soni V (2019) RGD peptide as a Targeting Moiety for Theranostic purpose: an Update Study. Int J Pept Res Ther 25(1):49–65. https://doi.org/10.1007/s10989-018-9728-3

Article  CAS  Google Scholar 

Asif F, Zaman SU, Arnab MKH, Hasan M, Islam MM (2024) Antimicrobial peptides as therapeutics: confronting Delivery challenges to optimize efficacy. https://doi.org/10.1016/j.microb.2024.100051. The Microbe 100051

Avram S, Buiu C, Borcan F, Milac AL (2012) More effective antimicrobial mastoparan derivatives, generated by 3D-QSAR-Almond and computational mutagenesis. Mol Biosyst 8(2):587–594. https://doi.org/10.1039/c1mb05297g

Article  CAS  PubMed  Google Scholar 

Bahrambeigi S, Sanajou D, Shafiei-Irannejad V (2019) Major fundamental factors hindering immune system in defense against tumor cells: the link between insufficiency of innate immune responses, metabolism, and neurotransmitters with effector immune cells disability. Immunol Lett 212:81–87. https://doi.org/10.1016/j.imlet.2019.06.008

Article  CAS  PubMed  Google Scholar 

Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7(1):46541. https://doi.org/10.1038/srep46541

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M (2021) Biomedical Relevance of Novel anticancer peptides in the sensitive treatment of Cancer. Biomolecules 11(8):1120. https://doi.org/10.3390/biom11081120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD (2017) Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 74(20):3809–3825. https://doi.org/10.1007/s00018-017-2604-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayer AS, Mishra NN, Sakoulas G, Nonejuie P, Nast CC, Pogliano J, Yang SJ et al (2014) Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Ant Agents Chem 58(12):7462–7467. https://doi.org/10.1128/aac.03422-14

Article  Google Scholar 

Ben Said L, Emond-Rheault J, Soltani S, Telhig S, Zirah S, Rebuffat S, Diarra MS, Goodridge L, Levesque RC, Fliss I (2020) Phenomic and genomic approaches to studying the inhibition of multiresistant SALMONELLA ENTERICA by microcin J25. Environ Microbiol 22(7):2907–2920. https://doi.org/10.1111/1462-2920.15045

Article  CAS  PubMed  Google Scholar 

Benfield AH, Henriques ST (2020) Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Front Med Tech 2:610997. https://doi.org/10.3389/fmedt.2020.610997

Article  Google Scholar 

Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin. Adv App Microbiol 163–184. https://doi.org/10.1016/s0065-2164(01)49013-7

Böhmová E, Machová D, Pechar M, Pola R, Venclíková K, Janoušková O, Etrych T (2018) Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells. Physiol Res 67:S267–S279. https://doi.org/10.33549/physiolres.933975

Article  PubMed  Google Scholar 

Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77(4):451–459. https://doi.org/10.1189/jlb.0704380

Article  CAS  PubMed  Google Scholar 

Boto A, Pérez de la Lastra JM, González CC (2018) The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules 23(2):311. https://doi.org/10.3390/molecules23020311

Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, Wruck CJ, Schröder JM, Pufe T, Lucius R (2008) Role of glial cells in the functional expression of LL-37/Rat cathelin-related antimicrobial peptide in Meningitis. J Neuropathology Experimental Neurol 67(11):1041–1054. https://doi.org/10.1097/NEN.0b013e31818b4801

Article  CAS  Google Scholar 

Braun K, Pochert A, Lindén M, Davoudi M, Schmidtchen A, Nordström R, Malmsten M (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170. https://doi.org/10.1016/j.jcis.2016.05.002

Article  CAS  PubMed  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

Article  CAS  PubMed  Google Scholar 

Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441. https://doi.org/10.1242/jcs.031682

Article  CAS  PubMed 

Comments (0)

No login
gif