Abdi M, Mirkalantari S, Amirmozafari N (2019) Bacterial resistance to antimicrobial peptides. J Pept Sci 25(11):e3210. https://doi.org/10.1002/psc.3210
Article CAS PubMed Google Scholar
Adyns L, Proost P, Struyf S (2023) Role of defensins in Tumor Biology. Int J Mol Sci 24(6):5268. https://doi.org/10.3390/ijms24065268
Article CAS PubMed PubMed Central Google Scholar
Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138. https://doi.org/10.1016/j.bcp.2016.09.018
Article CAS PubMed Google Scholar
Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93(1):75–83. https://doi.org/10.1111/cbdd.13381
Article CAS PubMed Google Scholar
Ahmad A, Khan JM, Bandy A (2024) A systematic review of the design and applications of antimicrobial peptides in Wound Healing. Cureus 16(4). https://doi.org/10.7759/cureus.58178
Akbar S, Raza A, Zou Q (2024) Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. BMC Bioinformatics 25(1):102. https://doi.org/10.1186/s12859-024-05726-5
Article CAS PubMed PubMed Central Google Scholar
Akhoundova D, Francica P, Rottenberg S, Rubin MA (2024) DNA damage response and mismatch repair gene defects in advanced and metastatic prostate cancer. Adv Anat Pathol 31(2):61–69. https://doi.org/10.1097/pap.0000000000000422
Article CAS PubMed Google Scholar
Alford MA, Baquir B, Santana FL, Haney EF, Hancock RE (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 11:547718. https://doi.org/10.3389/fmicb.2020.01902
Almarwani B, Phambu N, Hamada YZ, Sunda-Meya A (2020) Interactions of an anionic antimicrobial peptide with zinc (II): application to bacterial mimetic membranes. Langmuir 36(48):14554–14562. https://doi.org/10.1021/acs.langmuir.0c02306
Article CAS PubMed Google Scholar
Altieri A, Marshall CL, Ramotar P, Lloyd D, Hemshekhar M, Spicer V, Mookherjee N et al (2024) Human host defence peptide LL-37 suppresses TNFα-mediated matrix metalloproteinases MMP9 and MMP13, in human bronchial epithelial cells. J Innate Immun 16(1):203–215. https://doi.org/10.1159/000537775
Article CAS PubMed PubMed Central Google Scholar
Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Res Up 26:43–57. https://doi.org/10.1016/j.drup.2016.04.002
Andrés CMC, De La Pérez JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E (2024) Anticancer activity of Metallodrugs and metallizing host defense peptides—current developments in Structure-Activity relationship. Int J Mol Sci 25(13):7314. https://doi.org/10.3390/ijms25137314
Article CAS PubMed PubMed Central Google Scholar
Arakal BS, Whitworth DE, James PE, Rowlands R, Madhusoodanan NPT, Baijoo MR, Livingstone PG (2023) Silico and in Vitro analyses reveal promising antimicrobial peptides from Myxobacteria. Probiotics Antimicrob Proteins 15(1):202–214. https://doi.org/10.1007/s12602-022-10036-4
Article CAS PubMed Google Scholar
Asati S, Pandey V, Soni V (2019) RGD peptide as a Targeting Moiety for Theranostic purpose: an Update Study. Int J Pept Res Ther 25(1):49–65. https://doi.org/10.1007/s10989-018-9728-3
Asif F, Zaman SU, Arnab MKH, Hasan M, Islam MM (2024) Antimicrobial peptides as therapeutics: confronting Delivery challenges to optimize efficacy. https://doi.org/10.1016/j.microb.2024.100051. The Microbe 100051
Avram S, Buiu C, Borcan F, Milac AL (2012) More effective antimicrobial mastoparan derivatives, generated by 3D-QSAR-Almond and computational mutagenesis. Mol Biosyst 8(2):587–594. https://doi.org/10.1039/c1mb05297g
Article CAS PubMed Google Scholar
Bahrambeigi S, Sanajou D, Shafiei-Irannejad V (2019) Major fundamental factors hindering immune system in defense against tumor cells: the link between insufficiency of innate immune responses, metabolism, and neurotransmitters with effector immune cells disability. Immunol Lett 212:81–87. https://doi.org/10.1016/j.imlet.2019.06.008
Article CAS PubMed Google Scholar
Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7(1):46541. https://doi.org/10.1038/srep46541
Article CAS PubMed PubMed Central Google Scholar
Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M (2021) Biomedical Relevance of Novel anticancer peptides in the sensitive treatment of Cancer. Biomolecules 11(8):1120. https://doi.org/10.3390/biom11081120
Article CAS PubMed PubMed Central Google Scholar
Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD (2017) Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 74(20):3809–3825. https://doi.org/10.1007/s00018-017-2604-z
Article CAS PubMed PubMed Central Google Scholar
Bayer AS, Mishra NN, Sakoulas G, Nonejuie P, Nast CC, Pogliano J, Yang SJ et al (2014) Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Ant Agents Chem 58(12):7462–7467. https://doi.org/10.1128/aac.03422-14
Ben Said L, Emond-Rheault J, Soltani S, Telhig S, Zirah S, Rebuffat S, Diarra MS, Goodridge L, Levesque RC, Fliss I (2020) Phenomic and genomic approaches to studying the inhibition of multiresistant SALMONELLA ENTERICA by microcin J25. Environ Microbiol 22(7):2907–2920. https://doi.org/10.1111/1462-2920.15045
Article CAS PubMed Google Scholar
Benfield AH, Henriques ST (2020) Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Front Med Tech 2:610997. https://doi.org/10.3389/fmedt.2020.610997
Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin. Adv App Microbiol 163–184. https://doi.org/10.1016/s0065-2164(01)49013-7
Böhmová E, Machová D, Pechar M, Pola R, Venclíková K, Janoušková O, Etrych T (2018) Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells. Physiol Res 67:S267–S279. https://doi.org/10.33549/physiolres.933975
Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77(4):451–459. https://doi.org/10.1189/jlb.0704380
Article CAS PubMed Google Scholar
Boto A, Pérez de la Lastra JM, González CC (2018) The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules 23(2):311. https://doi.org/10.3390/molecules23020311
Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, Wruck CJ, Schröder JM, Pufe T, Lucius R (2008) Role of glial cells in the functional expression of LL-37/Rat cathelin-related antimicrobial peptide in Meningitis. J Neuropathology Experimental Neurol 67(11):1041–1054. https://doi.org/10.1097/NEN.0b013e31818b4801
Braun K, Pochert A, Lindén M, Davoudi M, Schmidtchen A, Nordström R, Malmsten M (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170. https://doi.org/10.1016/j.jcis.2016.05.002
Article CAS PubMed Google Scholar
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098
Article CAS PubMed Google Scholar
Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441. https://doi.org/10.1242/jcs.031682
Comments (0)